{"title":"VLSI Implementation of Medical Image Fusion Using DWT-PCA Algorithms","authors":"S. Borra, Rajesh K. Panakala, P. Kumar","doi":"10.5772/intechopen.91298","DOIUrl":"https://doi.org/10.5772/intechopen.91298","url":null,"abstract":"Nowadays, the usage of DIP is more important in the medical field to identify the activities of the patients related to various diseases. Magnetic Resonance Imaging (MRI) and Computer Tomography (CT) scan images are used to perform the fusion process. In brain medical image, MRI scan is used to show the brain structural information without functional data. But, CT scan image is included the functional data with brain activity. To improve the low dose CT scan, hybrid algorithm is introduced in this paper which is implemented in FPGA. The main objective of this work is to optimize performances of the hardware. This work is implemented in FPGA. The combination of Discrete Wavelet Transform (DWT) and Principle Component Analysis (PCA) is known as hybrid algorithm. The Maximum Selection Rule (MSR) is used to select the high frequency component from DWT. These three algorithms have RTL architecture which is implemented by Verilog code. Application Specified Integrated Chips (ASIC) and Field Programmable Gate Array (FPGA) performances analyzed for the different methods. In 180 nm technology, DWT-PCA-IF architecture achieved 5.145 mm 2 area, 298.25 mW power, and 124 ms delay. From the fused medical image, mean, Standard Deviation (SD), entropy, and Mutual Information (MI) performances are evaluated for DWT-PCA method.","PeriodicalId":199890,"journal":{"name":"Field Programmable Gate Arrays (FPGAs) II","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124019870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Efficient FPGA-Based Frequency Shifter for LTE/LTE-A Systems","authors":"F. A. P. Figueiredo, Fabbryccio A. C. M. Cardoso","doi":"10.5772/INTECHOPEN.91339","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.91339","url":null,"abstract":"The Physical Random Access Channel plays an important role in LTE and LTE-A systems. Through this channel, the user equipment aligns its uplink transmissions to the eNodeB ’ s uplink and gains access to the network. One of the initial operations executed by the receiver at eNodeB side is the translation of the channel ’ s signal back to base-band. This operation is a necessary step for preamble detection and can be executed through a time-domain frequency-shift operation. Therefore, in this paper, we present the hardware architecture and design details of an optimised and configurable FPGA-based time-domain frequency shifter. The proposed architecture is based on a customised Numerically Controlled Oscillator that is employed for creating complex exponential samples using only plain logical resources. The main advantage of the proposed architecture is that it completely removes the necessity of saving in memory a huge number of long complex exponentials by making use of a Look-Up Table and exploiting the quarter-wave symmetry of the basis waveform. The results demonstrate that the proposed architecture provides high Spurious Free Dynamic Range signals employing only a minimal number of FPGA resources. Additionally, the proposed architecture presents spur-suppression ranging from 62.13 to 153.58 dB without employing any correction.","PeriodicalId":199890,"journal":{"name":"Field Programmable Gate Arrays (FPGAs) II","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129403127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications","authors":"M. Ferreira, J. Ferreira","doi":"10.5772/intechopen.91297","DOIUrl":"https://doi.org/10.5772/intechopen.91297","url":null,"abstract":"The fifth-generation (5G) revolution represents more than a mere performance enhancement of previous generations: it will deeply transform the way humans and/or machines interact, enabling a heterogeneous expansion in the number of use cases and services. Crucial to the realization of this revolution is the design of hardware components characterized by high degrees of flexibility, versatility and resource/power efficiency. This chapter proposes a field-programmable gate array (FPGA)-oriented baseband processing architecture suitable for fast-changing communication environments such as 4G/5G waveform coexistence, noncontiguous carrier aggregation (CA) or centralized cloud radio access network (C-RAN) processing. The proposed architecture supports three 5G waveform candidates and is shown to be upgradable, resource-efficient and cost-effective. Through hardware virtualization, enabled by dynamic partial reconfiguration (DPR), the design space exploration of our architecture exceeds the hardware resources available on the Zynq xc7z020 device. Moreover, dynamic frequency scaling (DFS) enables the runtime adjustment of processing throughput and power reductions by up to 88%. The combined resource overhead for DPR and DFS is very low, and the reconfiguration latency stays two orders of magnitude below the control plane latency requirements proposed for 5G communications.","PeriodicalId":199890,"journal":{"name":"Field Programmable Gate Arrays (FPGAs) II","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124154519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. G. Velásquez-Aguilar, O. Oubram, L. Cisneros-Villalobos
{"title":"Real-Time FPGA-Based Systems to Remote Monitoring","authors":"J. G. Velásquez-Aguilar, O. Oubram, L. Cisneros-Villalobos","doi":"10.5772/intechopen.89629","DOIUrl":"https://doi.org/10.5772/intechopen.89629","url":null,"abstract":"Some industrial and laboratory applications such as control, monitoring, test and measurements, and automation require real-time systems for their development. Embedded systems for acquisition and processing often require the participation of the embedded operating system and therefore are necessary techniques that can accelerate software execution. The latest field-programmable gate arrays’ (FPGA) technology has blurred the distinction between hardware and software with embedded processors that allow the development of Systems-on-a-Chip (SoC) running on operating systems. The widespread adoption of wireless technologies such as Bluetooth, ZigBee, and Wi-Fi in the last years has facilitated the use of these technologies to the development of real-time monitoring applications that combined with FPGA devices which has the advantages of low cost, flexibility, and scalability as compared with other commercial systems.","PeriodicalId":199890,"journal":{"name":"Field Programmable Gate Arrays (FPGAs) II","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130867424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}