J. G. Velásquez-Aguilar, O. Oubram, L. Cisneros-Villalobos
{"title":"Real-Time FPGA-Based Systems to Remote Monitoring","authors":"J. G. Velásquez-Aguilar, O. Oubram, L. Cisneros-Villalobos","doi":"10.5772/intechopen.89629","DOIUrl":null,"url":null,"abstract":"Some industrial and laboratory applications such as control, monitoring, test and measurements, and automation require real-time systems for their development. Embedded systems for acquisition and processing often require the participation of the embedded operating system and therefore are necessary techniques that can accelerate software execution. The latest field-programmable gate arrays’ (FPGA) technology has blurred the distinction between hardware and software with embedded processors that allow the development of Systems-on-a-Chip (SoC) running on operating systems. The widespread adoption of wireless technologies such as Bluetooth, ZigBee, and Wi-Fi in the last years has facilitated the use of these technologies to the development of real-time monitoring applications that combined with FPGA devices which has the advantages of low cost, flexibility, and scalability as compared with other commercial systems.","PeriodicalId":199890,"journal":{"name":"Field Programmable Gate Arrays (FPGAs) II","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Programmable Gate Arrays (FPGAs) II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.89629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Some industrial and laboratory applications such as control, monitoring, test and measurements, and automation require real-time systems for their development. Embedded systems for acquisition and processing often require the participation of the embedded operating system and therefore are necessary techniques that can accelerate software execution. The latest field-programmable gate arrays’ (FPGA) technology has blurred the distinction between hardware and software with embedded processors that allow the development of Systems-on-a-Chip (SoC) running on operating systems. The widespread adoption of wireless technologies such as Bluetooth, ZigBee, and Wi-Fi in the last years has facilitated the use of these technologies to the development of real-time monitoring applications that combined with FPGA devices which has the advantages of low cost, flexibility, and scalability as compared with other commercial systems.