Philosophical Transactions of the Royal Society B: Biological Sciences最新文献

筛选
英文 中文
Cytochromes P450 evolution in the plant terrestrialization context. 植物陆地化背景下的细胞色素 P450 进化。
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-11-18 Epub Date: 2024-09-30 DOI: 10.1098/rstb.2023.0363
Danièle Werck-Reichhart, David R Nelson, Hugues Renault
{"title":"Cytochromes P450 evolution in the plant terrestrialization context.","authors":"Danièle Werck-Reichhart, David R Nelson, Hugues Renault","doi":"10.1098/rstb.2023.0363","DOIUrl":"10.1098/rstb.2023.0363","url":null,"abstract":"<p><p>Plants started to colonize land around 500 million years ago. It meant dealing with new challenges like absence of buoyancy, water and nutrients shortage, increased light radiation, reproduction on land, and interaction with new microorganisms. This obviously required the acquisition of novel functions and metabolic capacities. Cytochrome P450 (CYP) monooxygenases form the largest superfamily of enzymes and are present to catalyse critical and rate-limiting steps in most plant-specific pathways. The different families of CYP enzymes are typically associated with specific functions. CYP family emergence and evolution in the green lineage thus offer the opportunity to obtain a glimpse into the timing of the evolution of the critical functions that were required (or became dispensable) for the plant transition to land. Based on the analysis of currently available genomic data, this review provides an evolutionary history of plant CYPs in the context of plant terrestrialization and describes the associated functions in the different lineages. Without surprise it highlights the relevance of the biosynthesis of antioxidants and UV screens, biopolymers, and critical signalling pathways. It also points to important unsolved questions that would deserve to be answered to improve our understanding of plant adaptation to challenging environments and the management of agricultural traits. This article is part of the theme issue 'The evolution of plant metabolism'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1914","pages":"20230363"},"PeriodicalIF":5.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449215/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolution of flavonoid biosynthesis. 类黄酮生物合成的演变。
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-11-18 Epub Date: 2024-09-30 DOI: 10.1098/rstb.2023.0361
Kevin M Davies, Christelle M Andre, Samarth Kulshrestha, Yanfei Zhou, Kathy E Schwinn, Nick W Albert, David Chagné, John W van Klink, Marco Landi, John L Bowman
{"title":"The evolution of flavonoid biosynthesis.","authors":"Kevin M Davies, Christelle M Andre, Samarth Kulshrestha, Yanfei Zhou, Kathy E Schwinn, Nick W Albert, David Chagné, John W van Klink, Marco Landi, John L Bowman","doi":"10.1098/rstb.2023.0361","DOIUrl":"10.1098/rstb.2023.0361","url":null,"abstract":"<p><p>The flavonoid pathway is characteristic of land plants and a central biosynthetic component enabling life in a terrestrial environment. Flavonoids provide tolerance to both abiotic and biotic stresses and facilitate beneficial relationships, such as signalling to symbiont microorganisms, or attracting pollinators and seed dispersal agents. The biosynthetic pathway shows great diversity across species, resulting principally from repeated biosynthetic gene duplication and neofunctionalization events during evolution. Such events may reflect a selection for new flavonoid structures with novel functions that enable occupancy of varied ecological niches. However, the biochemical and genetic diversity of the pathway also likely resulted from evolution along parallel trends across land plant lineages, producing variant compounds with similar biological functions. Analyses of the wide range of whole-plant genome sequences now available, particularly for archegoniate plants, have enabled proposals on which genes were ancestral to land plants and which arose within the land plant lineages. In this review, we discuss the emerging proposals for how the flavonoid pathway may have evolved and diversified. This article is part of the theme issue 'The evolution of plant metabolism'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1914","pages":"20230361"},"PeriodicalIF":5.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528363/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overlooked and misunderstood: can glutathione conjugates be clues to understanding plant glutathione transferases? 被忽视和误解:谷胱甘肽共轭物能否成为了解植物谷胱甘肽转移酶的线索?
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-11-18 Epub Date: 2024-09-30 DOI: 10.1098/rstb.2023.0365
Nikola Micic, Asta Holmelund Rønager, Mette Sørensen, Nanna Bjarnholt
{"title":"Overlooked and misunderstood: can glutathione conjugates be clues to understanding plant glutathione transferases?","authors":"Nikola Micic, Asta Holmelund Rønager, Mette Sørensen, Nanna Bjarnholt","doi":"10.1098/rstb.2023.0365","DOIUrl":"10.1098/rstb.2023.0365","url":null,"abstract":"<p><p>Plant glutathione transferases (GSTs) constitute a large and diverse family of enzymes that are involved in plant stress response, metabolism and defence, yet their physiological functions remain largely elusive. Consistent with the traditional view on GSTs across organisms as detoxification enzymes, <i>in vitro</i> most plant GSTs catalyse glutathionylation, conjugation of the tripeptide glutathione (GSH; γ-Glu-Cys-Gly) onto reactive molecules. However, when it comes to elucidating GST functions, it remains a key challenge that the endogenous plant glutathione conjugates (GS-conjugates) that would result from such glutathionylation reactions are rarely reported. Furthermore, GSTs often display high substrate promiscuity, and their proposed substrates are prone to spontaneous chemical reactions with GSH; hence, single-gene knockouts rarely provide clear chemotypes or phenotypes. In a few cases, GS-conjugates are demonstrated to be biosynthetic intermediates that are rapidly further metabolized towards a pathway end product, explaining their low abundance and rare detection. In this review, we summarize the current knowledge of plant GST functions and how and possibly why evolution has resulted in a broad and extensive expansion of the plant GST family. Finally, we demonstrate that endogenous GS-conjugates are more prevalent in plants than assumed and suggest they are overlooked as clues towards the identification of plant GST functions. This article is part of the theme issue 'The evolution of plant metabolism'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1914","pages":"20230365"},"PeriodicalIF":5.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449216/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zygospore formation in Zygnematophyceae predates several land plant traits. Zygnematophyceae 的子囊孢子形成早于陆生植物的几种特征。
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-11-18 Epub Date: 2024-09-30 DOI: 10.1098/rstb.2023.0356
Charlotte Permann, Andreas Holzinger
{"title":"Zygospore formation in Zygnematophyceae predates several land plant traits.","authors":"Charlotte Permann, Andreas Holzinger","doi":"10.1098/rstb.2023.0356","DOIUrl":"10.1098/rstb.2023.0356","url":null,"abstract":"<p><p>Recent research on a special type of sexual reproduction and zygospore formation in Zygnematophyceae, the sister group of land plants, is summarized. Within this group, gamete fusion occurs by conjugation. Zygospore development in <i>Mougeotia, Spirogyra</i> and <i>Zygnema</i> is highlighted, which has recently been studied using Raman spectroscopy, allowing chemical imaging and detection of changes in starch and lipid accumulation. Three-dimensional reconstructions after serial block-face scanning electron microscopy (SBF-SEM) or focused ion beam SEM (FIB-SEM) made it possible to visualize and quantify cell wall and organelle changes during zygospore development. The zygospore walls undergo strong modifications starting from uniform thin cell walls to a multilayered structure. The mature cell wall is composed of a cellulosic endospore and exospore and a central mesospore built up by aromatic compounds. In <i>Spirogyra</i>, the exospore and endospore consist of thick layers of helicoidally arranged cellulose fibrils, which are otherwise only known from stone cells of land plants. While starch is degraded during maturation, providing building blocks for cell wall formation, lipid droplets accumulate and fill large parts of the ripe zygospores, similar to spores and seeds of land plants. Overall, data show similarities between streptophyte algae and embryophytes, suggesting that the genetic toolkit for many land plant traits already existed in their shared algal ancestor. This article is part of the theme issue 'The evolution of plant metabolism'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1914","pages":"20230356"},"PeriodicalIF":5.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolutionary conservation and metabolic significance of autophagy in algae. 藻类自噬的进化保护和代谢意义
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-11-18 Epub Date: 2024-09-30 DOI: 10.1098/rstb.2023.0368
Juliette Laude, Matteo Scarsini, Charlotte Nef, Chris Bowler
{"title":"Evolutionary conservation and metabolic significance of autophagy in algae.","authors":"Juliette Laude, Matteo Scarsini, Charlotte Nef, Chris Bowler","doi":"10.1098/rstb.2023.0368","DOIUrl":"10.1098/rstb.2023.0368","url":null,"abstract":"<p><p>Autophagy is a highly conserved 'self-digesting' mechanism used in eukaryotes to degrade and recycle cellular components by enclosing them in a double membrane compartment and delivering them to lytic organelles (lysosomes or vacuoles). Extensive studies in plants have revealed how autophagy is intricately linked to essential aspects of metabolism and growth, in both normal and stress conditions, including cellular and organelle homeostasis, nutrient recycling, development, responses to biotic and abiotic stresses, senescence and cell death. However, knowledge regarding autophagic processes in other photosynthetic organisms remains limited. In this review, we attempt to summarize the current understanding of autophagy in algae from a metabolic, molecular and evolutionary perspective. We focus on the composition and conservation of the autophagy molecular machinery in eukaryotes and discuss the role of autophagy in metabolic regulation, cellular homeostasis and stress adaptation in algae. This article is part of the theme issue 'The evolution of plant metabolism'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1914","pages":"20230368"},"PeriodicalIF":5.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449223/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of small molecule-mediated regulation of arbuscular mycorrhiza symbiosis. 小分子介导的丛枝菌根共生调控进化。
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-11-18 Epub Date: 2024-09-30 DOI: 10.1098/rstb.2023.0369
Pierre-Marc Delaux, Caroline Gutjahr
{"title":"Evolution of small molecule-mediated regulation of arbuscular mycorrhiza symbiosis.","authors":"Pierre-Marc Delaux, Caroline Gutjahr","doi":"10.1098/rstb.2023.0369","DOIUrl":"10.1098/rstb.2023.0369","url":null,"abstract":"<p><p>The arbuscular mycorrhizal (AM) symbiosis formed by most extant land plants with symbiotic fungi evolved 450 Ma. AM promotes plant growth by improving mineral nutrient and water uptake, while the symbiotic fungi obtain carbon in return. A number of plant genes regulating the steps leading to an efficient symbiosis have been identified; however, our understanding of the metabolic processes involved in the symbiosis and how they were wired to symbiosis regulation during plant evolution remains limited. Among them, the exchange of chemical signals, the activation of dedicated biosynthesis pathways and the production of secondary metabolites regulating late stages of the AM symbiosis begin to be well described across several land plant clades. Here, we review our current understanding of these processes and propose future directions to fully grasp the phylogenetic distribution and role played by small molecules during this ancient plant symbiosis. This article is part of the theme issue 'The evolution of plant metabolism'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1914","pages":"20230369"},"PeriodicalIF":5.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant sesquiterpene lactones. 植物倍半萜内酯
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-11-18 Epub Date: 2024-09-30 DOI: 10.1098/rstb.2023.0350
Olivia Agatha, Daniela Mutwil-Anderwald, Jhing Yein Tan, Marek Mutwil
{"title":"Plant sesquiterpene lactones.","authors":"Olivia Agatha, Daniela Mutwil-Anderwald, Jhing Yein Tan, Marek Mutwil","doi":"10.1098/rstb.2023.0350","DOIUrl":"10.1098/rstb.2023.0350","url":null,"abstract":"<p><p>Sesquiterpene lactones (STLs) are a prominent group of plant secondary metabolites predominantly found in the Asteraceae family and have multiple ecological roles and medicinal applications. This review describes the evolutionary and ecological significance of STLs, highlighting their roles in plant defence mechanisms against herbivory and as phytotoxins, alongside their function as environmental signalling molecules. We also cover the substantial role of STLs in medicine and their mode of action in health and disease. We discuss the biosynthetic pathways and the various modifications that make STLs one of the most diverse groups of metabolites. Finally, we discuss methods for identifying and predicting STL biosynthesis pathways. This article is part of the theme issue 'The evolution of plant metabolism'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1914","pages":"20230350"},"PeriodicalIF":5.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of phosphate scouting in the terrestrial biosphere. 陆地生物圈中磷酸盐侦察的演变。
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-11-18 Epub Date: 2024-09-30 DOI: 10.1098/rstb.2023.0355
Steffen Abel, Christin Naumann
{"title":"Evolution of phosphate scouting in the terrestrial biosphere.","authors":"Steffen Abel, Christin Naumann","doi":"10.1098/rstb.2023.0355","DOIUrl":"10.1098/rstb.2023.0355","url":null,"abstract":"<p><p>Chemistry assigns phosphorus and its most oxidized form, inorganic phosphate, unique roles for propelling bioenergetics and metabolism in all domains of life, possibly since its very origin on prebiotic Earth. For plants, access to the vital mineral nutrient profoundly affects growth, development and vigour, thus constraining net primary productivity in natural ecosystems and crop production in modern agriculture. Unlike other major biogenic elements, the low abundance and uneven distribution of phosphate in Earth's crust result from the peculiarities of phosphorus cosmochemistry and geochemistry. Here, we trace the chemical evolution of the element, the geochemical phosphorus cycle and its acceleration during Earth's history until the present (Anthropocene) as well as during the evolution and rise of terrestrial plants. We highlight the chemical and biological processes of phosphate mobilization and acquisition, first evolved in bacteria, refined in fungi and algae and expanded into powerful phosphate-prospecting strategies during land plant colonization. Furthermore, we review the evolution of the genetic and molecular networks from bacteria to terrestrial plants, which monitor intracellular and extracellular phosphate availabilities and coordinate the appropriate responses and adjustments to fluctuating phosphate supply. Lastly, we discuss the modern global phosphorus cycle deranged by human activity and the challenges imposed ahead. This article is part of the theme issue 'Evolution and diversity of plant metabolism'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1914","pages":"20230355"},"PeriodicalIF":5.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528361/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of the regulatory subunits for the heteromeric acetyl-CoA carboxylase. 乙酰-CoA羧化酶异构体调节亚基的进化。
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-11-18 Epub Date: 2024-09-30 DOI: 10.1098/rstb.2023.0353
Ana Caroline Conrado, Gabriel Lemes Jorge, R S P Rao, Chunhui Xu, Dong Xu, Yonghua Li-Beisson, Jay J Thelen
{"title":"Evolution of the regulatory subunits for the heteromeric acetyl-CoA carboxylase.","authors":"Ana Caroline Conrado, Gabriel Lemes Jorge, R S P Rao, Chunhui Xu, Dong Xu, Yonghua Li-Beisson, Jay J Thelen","doi":"10.1098/rstb.2023.0353","DOIUrl":"10.1098/rstb.2023.0353","url":null,"abstract":"<p><p>The committed step for de novo fatty acid (FA) synthesis is the ATP-dependent carboxylation of acetyl-coenzyme A catalysed by acetyl-CoA carboxylase (ACCase). In most plants, ACCase is a multi-subunit complex orthologous to prokaryotes. However, unlike prokaryotes, the plant and algal orthologues are comprised both catalytic and additional dedicated regulatory subunits. Novel regulatory subunits, biotin lipoyl attachment domain-containing proteins (BADC) and carboxyltransferase interactors (CTI) (both three-gene families in <i>Arabidopsis</i>) represent new effectors specific to plants and certain algal species. The evolutionary history of these genes in autotrophic eukaryotes remains elusive, making it an ongoing area of research. Analyses of potential protein-protein and co-occurrence interactions, informed by gene network patterns using the STRING database, in <i>Arabidopsis thaliana</i> and <i>Chlamydomonas reinhardtii</i> unveil intricate gene associations with ACCase, suggesting a complex interplay between FA synthesis and other cellular processes. Among both species, a higher number of co-expressed genes was identified in <i>Arabidopsis</i>, indicating a wider potential regulatory network of ACCase in plants. This review investigates the extent to which these genes arose in autotrophic eukaryotes and provides insights into their evolutionary trajectory. This article is part of the theme issue 'The evolution of plant metabolism'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1914","pages":"20230353"},"PeriodicalIF":5.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449227/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolution of plant responses underlying specialized metabolism in host-pathogen interactions. 在宿主与病原体相互作用中,植物反应的进化是特化新陈代谢的基础。
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-11-18 Epub Date: 2024-09-30 DOI: 10.1098/rstb.2023.0370
Astrid Agorio, Eilyn Mena, Mathias F Rockenbach, Inés Ponce De León
{"title":"The evolution of plant responses underlying specialized metabolism in host-pathogen interactions.","authors":"Astrid Agorio, Eilyn Mena, Mathias F Rockenbach, Inés Ponce De León","doi":"10.1098/rstb.2023.0370","DOIUrl":"10.1098/rstb.2023.0370","url":null,"abstract":"<p><p>In the course of plant evolution from aquatic to terrestrial environments, land plants (embryophytes) acquired a diverse array of specialized metabolites, including phenylpropanoids, flavonoids and cuticle components, enabling adaptation to various environmental stresses. While embryophytes and their closest algal relatives share candidate enzymes responsible for producing some of these compounds, the complete genetic network for their biosynthesis emerged in embryophytes. In this review, we analysed genomic data from chlorophytes, charophytes and embryophytes to identify genes related to phenylpropanoid, flavonoid and cuticle biosynthesis. By integrating published research, transcriptomic data and metabolite studies, we provide a comprehensive overview on how these specialized metabolic pathways have contributed to plant defence responses to pathogens in non-vascular bryophytes and vascular plants throughout evolution. The evidence suggests that these biosynthetic pathways have provided land plants with a repertoire of conserved and lineage-specific compounds, which have shaped immunity against invading pathogens. The discovery of additional enzymes and metabolites involved in bryophyte responses to pathogen infection will provide evolutionary insights into these versatile pathways and their impact on environmental terrestrial challenges.This article is part of the theme issue 'The evolution of plant metabolism'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1914","pages":"20230370"},"PeriodicalIF":5.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449219/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信