Philosophical Transactions of the Royal Society B: Biological Sciences最新文献

筛选
英文 中文
Population age structure shapes selection on social behaviour in a long-lived insect. 种群年龄结构决定了长寿昆虫社会行为的选择。
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-12-16 Epub Date: 2024-10-28 DOI: 10.1098/rstb.2023.0331
Phoebe A Cook, Robin A Costello, Edmund D Brodie Iii, Vincent Formica
{"title":"Population age structure shapes selection on social behaviour in a long-lived insect.","authors":"Phoebe A Cook, Robin A Costello, Edmund D Brodie Iii, Vincent Formica","doi":"10.1098/rstb.2023.0331","DOIUrl":"10.1098/rstb.2023.0331","url":null,"abstract":"<p><p>Social traits are expected to experience highly context-dependent selection, but we know little about the contextual factors that shape selection on social behaviours. We hypothesized that the fitness consequences of social interactions will depend on the age of social partners, and therefore that population age structure will shape evolutionary pressures on sociality. Here, we investigate the consequences of age variation at multiple levels of social organization for both individual fitness and sexual selection on social network traits. We experimentally manipulated the age composition of populations of the forked fungus beetle <i>Bolitotherus cornutus</i>, creating 12 replicate populations with either young or old age structures. We found that fitness is associated with variance in age at three different levels of organization: the individual, interacting social partners, and the population. Older individuals have higher reproductive success, males pay a fitness cost when they interact with old males and females achieve lower fitness in older populations. In addition to influencing fitness, population age structure also altered the selection acting on social network position in females. Female sociality is under positive selection only in old populations. Our results highlight age structure as an understudied demographic variable shaping the landscape of selection on social behaviour.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1916","pages":"20230331"},"PeriodicalIF":5.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513641/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From lab to life: challenges and perspectives of fNIRS for haemodynamic-based neurofeedback in real-world environments. 从实验室到生活:fNIRS 在真实世界环境中用于基于血流动力学的神经反馈的挑战和前景。
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-12-02 Epub Date: 2024-10-21 DOI: 10.1098/rstb.2023.0087
Franziska Klein, Simon H Kohl, Michael Lührs, David M A Mehler, Bettina Sorger
{"title":"From lab to life: challenges and perspectives of fNIRS for haemodynamic-based neurofeedback in real-world environments.","authors":"Franziska Klein, Simon H Kohl, Michael Lührs, David M A Mehler, Bettina Sorger","doi":"10.1098/rstb.2023.0087","DOIUrl":"10.1098/rstb.2023.0087","url":null,"abstract":"<p><p>Neurofeedback allows individuals to monitor and self-regulate their brain activity, potentially improving human brain function. Beyond the traditional electrophysiological approach using primarily electroencephalography, brain haemodynamics measured with functional magnetic resonance imaging (fMRI) and more recently, functional near-infrared spectroscopy (fNIRS) have been used (haemodynamic-based neurofeedback), particularly to improve the spatial specificity of neurofeedback. Over recent years, especially fNIRS has attracted great attention because it offers several advantages over fMRI such as increased user accessibility, cost-effectiveness and mobility-the latter being the most distinct feature of fNIRS. The next logical step would be to transfer haemodynamic-based neurofeedback protocols that have already been proven and validated by fMRI to mobile fNIRS. However, this undertaking is not always easy, especially since fNIRS novices may miss important fNIRS-specific methodological challenges. This review is aimed at researchers from different fields who seek to exploit the unique capabilities of fNIRS for neurofeedback. It carefully addresses fNIRS-specific challenges and offers suggestions for possible solutions. If the challenges raised are addressed and further developed, fNIRS could emerge as a useful neurofeedback technique with its own unique application potential-the targeted training of brain activity in real-world environments, thereby significantly expanding the scope and scalability of haemodynamic-based neurofeedback applications.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1915","pages":"20230087"},"PeriodicalIF":5.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inducing representational change in the hippocampus through real-time neurofeedback. 通过实时神经反馈诱导海马体的表象变化
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-12-02 Epub Date: 2024-10-21 DOI: 10.1098/rstb.2023.0091
Kailong Peng, Jeffrey D Wammes, Alex Nguyen, Coraline Rinn Iordan, Kenneth A Norman, Nicholas B Turk-Browne
{"title":"Inducing representational change in the hippocampus through real-time neurofeedback.","authors":"Kailong Peng, Jeffrey D Wammes, Alex Nguyen, Coraline Rinn Iordan, Kenneth A Norman, Nicholas B Turk-Browne","doi":"10.1098/rstb.2023.0091","DOIUrl":"10.1098/rstb.2023.0091","url":null,"abstract":"<p><p>When you perceive or remember something, other related things come to mind, affecting how these competing items are subsequently perceived and remembered. Such behavioural consequences are believed to result from changes in the overlap of neural representations of these items, especially in the hippocampus. According to multiple theories, hippocampal overlap should increase (integration) when there is high coactivation between cortical representations. However, prior studies used indirect proxies for coactivation by manipulating stimulus similarity or task demands. Here, we induce coactivation in visual cortex more directly using closed-loop neurofeedback from real-time functional magnetic resonance imaging (fMRI). While viewing one object, participants were rewarded for activating the representation of another object as strongly as possible. Across multiple real-time fMRI sessions, participants succeeded in using this neurofeedback to increase coactivation. Compared with a baseline of untrained objects, this protocol led to memory integration in behaviour and the brain: the trained objects became harder for participants to discriminate behaviourally in a categorical perception task and harder to discriminate neurally from patterns of fMRI activity in their hippocampus as a result of losing unique features. These findings demonstrate that neurofeedback can be used to alter and combine memories.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1915","pages":"20230091"},"PeriodicalIF":5.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation. 神经反馈:内源性神经调节的新领域和神经认知机制。
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-12-02 Epub Date: 2024-10-21 DOI: 10.1098/rstb.2023.0081
James Sulzer, T Dorina Papageorgiou, Rainer Goebel, Talma Hendler
{"title":"Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation.","authors":"James Sulzer, T Dorina Papageorgiou, Rainer Goebel, Talma Hendler","doi":"10.1098/rstb.2023.0081","DOIUrl":"10.1098/rstb.2023.0081","url":null,"abstract":"<p><p>Neurofeedback (NF) is endogenous neuromodulation of circumscribed brain circuitry. While its use of real-time brain activity in a closed-loop system is similar to brain-computer interfaces, instead of controlling an external device like the latter, the goal of NF is to change a targeted brain function. In this special issue on NF, we present current and future methods for extracting and manipulating neural function, how these methods may reveal new insights about brain function, applications, and rarely discussed ethical considerations of guiding and interpreting the brain activity of others. Together, the articles in this issue outline the possibilities of NF use and impact in the real world, poising to influence the development of more effective and personalized NF protocols, improving the understanding of underlying psychological and neurological mechanisms and enhancing treatment precision for various neurological and psychiatric conditions.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1915","pages":"20230081"},"PeriodicalIF":5.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491839/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Online self-evaluation of fMRI-based neurofeedback performance. 基于 fMRI 的神经反馈性能在线自我评估。
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-12-02 Epub Date: 2024-10-21 DOI: 10.1098/rstb.2023.0089
Santiago Muñoz-Moldes, Anita Tursic, Michael Lührs, Judith Eck, Amaia Benitez Andonegui, Judith Peters, Axel Cleeremans, Rainer Goebel
{"title":"Online self-evaluation of fMRI-based neurofeedback performance.","authors":"Santiago Muñoz-Moldes, Anita Tursic, Michael Lührs, Judith Eck, Amaia Benitez Andonegui, Judith Peters, Axel Cleeremans, Rainer Goebel","doi":"10.1098/rstb.2023.0089","DOIUrl":"10.1098/rstb.2023.0089","url":null,"abstract":"<p><p>This study explores the subjective evaluation of supplementary motor area (SMA) regulation performance in a real-time functional magnetic resonance imaging neurofeedback (fMRI-NF) task. In fMRI-NF, people learn how to self-regulate their brain activity by performing mental actions to achieve a certain target level (TL) of blood-oxygen-level-dependent (BOLD) activation. Here, we studied two types of self-evaluation: performance predictions and perceived confidence in the prediction judgement. Participants completed three sessions of SMA regulation in a 7 T fMRI scanner, performing a mental drawing task. During each trial, they modulated their imagery strategy to achieve one of two different levels of SMA activation and reported a performance prediction and their confidence in the prediction before receiving delayed BOLD-activation feedback. Results show that participants' performance predictions improved with learning throughout the three sessions, and that these improvements were not driven exclusively by their knowledge of previous performance. Confidence reports on the other hand showed no change throughout training and did not correlate with better and worse predictions. In addition to shedding light on mechanisms of internal self-evaluation during neurofeedback training, these results also point to a dissociation between predictions of performance and confidence reports in the presence of feedback. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1915","pages":"20230089"},"PeriodicalIF":5.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491843/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurofeedback: potential for abuse and regulatory frameworks in the United States. 神经反馈:滥用的可能性和美国的监管框架。
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-12-02 Epub Date: 2024-10-21 DOI: 10.1098/rstb.2023.0099
Fiona Furnari, Haesoo Park, Gideon Yaffe, Michelle Hampson
{"title":"Neurofeedback: potential for abuse and regulatory frameworks in the United States.","authors":"Fiona Furnari, Haesoo Park, Gideon Yaffe, Michelle Hampson","doi":"10.1098/rstb.2023.0099","DOIUrl":"10.1098/rstb.2023.0099","url":null,"abstract":"<p><p>Neurofeedback is a brain-training technique that continues to develop via ongoing innovations, and that has broadening potential impact. Once confined primarily to clinical and research settings, it is increasingly being used in the general population. Such development raises concerns about the current regulatory mechanisms and their adequacy in protecting patterns of economic and political decision-making from the novel technology. As studies have found neurofeedback to change subjects' preferences and mental associations covertly, there is a possibility it will be abused for political and commercial gains. Current regulatory practices (including disclaimer requirements, unfair and deceptive trade practice statutes and undue influence law) may be avenues from which to regulate neurofeedback influence. They are, however, limited. Regulating neurofeedback will face the line-drawing problem of determining when it induces an unacceptable level of influence. We suggest experiments that will clarify how the parameters of neurofeedback training affect its level of influence. In addition, we assert that the reactive nature of the traditional models of regulation will be inadequate against this and other rapidly transforming technologies. An integrated and proactive regulatory system designed for flexibility must be adopted to protect society in this era of modern technological advancement. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1915","pages":"20230099"},"PeriodicalIF":5.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amygdala self-neuromodulation capacity as a window for process-related network recruitment. 杏仁核自我神经调节能力是过程相关网络招募的窗口
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-12-02 Epub Date: 2024-10-21 DOI: 10.1098/rstb.2024.0186
Guy Gurevitch, Nitzan Lubianiker, Taly Markovits, Ayelet Or-Borichev, Haggai Sharon, Naomi B Fine, Tom Fruchtman-Steinbok, Jacob N Keynan, Moni Shahar, Alon Friedman, Neomi Singer, Talma Hendler
{"title":"Amygdala self-neuromodulation capacity as a window for process-related network recruitment.","authors":"Guy Gurevitch, Nitzan Lubianiker, Taly Markovits, Ayelet Or-Borichev, Haggai Sharon, Naomi B Fine, Tom Fruchtman-Steinbok, Jacob N Keynan, Moni Shahar, Alon Friedman, Neomi Singer, Talma Hendler","doi":"10.1098/rstb.2024.0186","DOIUrl":"10.1098/rstb.2024.0186","url":null,"abstract":"<p><p>Neurofeedback (NF) has emerged as a promising avenue for demonstrating process-related neuroplasticity, enabling self-regulation of brain function. NF targeting the amygdala has drawn attention to therapeutic potential in psychiatry, by potentially harnessing emotion-regulation processes. However, not all individuals respond equally to NF training, possibly owing to varying self-regulation abilities. This underscores the importance of understanding the mechanisms behind successful neuromodulation (i.e. capacity). This study aimed to investigate the establishment and neural correlates of neuromodulation capacity using data from repeated sessions of amygdala electrical fingerprint (Amyg-EFP)-NF and post-training functional magnetic resonance imaging (fMRI)-NF sessions. Results from 97 participants (healthy controls and post-traumatic stress disorder and fibromyalgia patients) revealed increased Amyg-EFP neuromodulation capacity over training, associated with post-training amygdala-fMRI modulation capacity and improvements in alexithymia. Individual differenaces in this capacity were associated with pre-training amygdala reactivity and initial neuromodulation success. Additionally, amygdala downregulation during fMRI-NF co-modulated with other regions such as the posterior insula and parahippocampal gyrus. This combined modulation better explained EFP-modulation capacity and improvement in alexithymia than the amygdala modulation alone, suggesting the relevance of this broader network to gained capacity. These findings support a network-based approach for NF and highlight the need to consider individual differences in brain function and modulation capacity to optimize NF interventions. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1915","pages":"20240186"},"PeriodicalIF":5.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Individualized functional magnetic resonance imaging neuromodulation enhances visuospatial perception: a proof-of-concept study. 个性化功能磁共振成像神经调节增强视觉空间感知:概念验证研究。
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-12-02 Epub Date: 2024-10-21 DOI: 10.1098/rstb.2023.0083
Anthony Allam, Vincent Allam, Sandy Reddy, Eric M Rohren, Sameer A Sheth, Emmanouil Froudarakis, T Dorina Papageorgiou
{"title":"Individualized functional magnetic resonance imaging neuromodulation enhances visuospatial perception: a proof-of-concept study.","authors":"Anthony Allam, Vincent Allam, Sandy Reddy, Eric M Rohren, Sameer A Sheth, Emmanouil Froudarakis, T Dorina Papageorgiou","doi":"10.1098/rstb.2023.0083","DOIUrl":"10.1098/rstb.2023.0083","url":null,"abstract":"<p><p>This proof-of-concept study uses individualized functional magnetic resonance imaging neuromodulation (iNM) to explore the mechanisms that enhance BOLD signals in visuospatial perception (VP) networks that are crucial for navigation. Healthy participants (<i>n</i> = 8) performed a VP up- and down-direction discrimination task at full and subthreshold coherence through peripheral vision, and superimposed direction through visual imagery (VI) at central space under iNM and control conditions. iNM targets individualized anatomical and functional middle- and medial-superior temporal (MST) networks that control VP. We found that iNM engaged selective exteroceptive and interoceptive attention (SEIA) and motor planning (MP) networks. Specifically, iNM increased overall: (i) area under the curve of the BOLD magnitude: 100% in VP (but decreased for weak coherences), 21-47% in VI, 26-59% in MP and 48-76% in SEIA through encoding; and (ii) classification performance for each direction, coherence and network through decoding, predicting stimuli from brain maps. Our findings, derived from encoding and decoding models, suggest that mechanisms induced by iNM are causally linked in enhancing visuospatial networks and demonstrate iNM as a feasibility treatment for low-vision patients with cortical blindness or visuospatial impairments that precede cognitive decline.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1915","pages":"20230083"},"PeriodicalIF":5.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491853/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closed-loop fMRI at the mesoscopic scale of columns and layers: Can we do it and why would we want to? 列和层的中观尺度闭环 fMRI:我们能做到吗?
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-12-02 Epub Date: 2024-10-21 DOI: 10.1098/rstb.2023.0085
Denis Chaimow, Romy Lorenz, Nikolaus Weiskopf
{"title":"Closed-loop fMRI at the mesoscopic scale of columns and layers: Can we do it and why would we want to?","authors":"Denis Chaimow, Romy Lorenz, Nikolaus Weiskopf","doi":"10.1098/rstb.2023.0085","DOIUrl":"10.1098/rstb.2023.0085","url":null,"abstract":"<p><p>Technological advances in fMRI including ultra-high magnetic fields (≥ 7 T) and acquisition methods that increase spatial specificity have paved the way for studies of the human cortex at the scale of layers and columns. This mesoscopic scale promises an improved mechanistic understanding of human cortical function so far only accessible to invasive animal neurophysiology. In recent years, an increasing number of studies have applied such methods to better understand the cortical function in perception and cognition. This future perspective article asks whether closed-loop fMRI studies could equally benefit from these methods to achieve layer and columnar specificity. We outline potential applications and discuss the conceptual and concrete challenges, including data acquisition and volitional control of mesoscopic brain activity. We anticipate an important role of fMRI with mesoscopic resolution for closed-loop fMRI and neurofeedback, yielding new insights into brain function and potentially clinical applications.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1915","pages":"20230085"},"PeriodicalIF":5.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513163/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of brain self-regulation: psychological factors, mechanistic models and neural substrates. 大脑自我调节的机制:心理因素、机制模型和神经基质。
IF 5.4 2区 生物学
Philosophical Transactions of the Royal Society B: Biological Sciences Pub Date : 2024-12-02 Epub Date: 2024-10-21 DOI: 10.1098/rstb.2023.0093
Ranganatha Sitaram, Andrea Sanchez-Corzo, Gabriela Vargas, Aurelio Cortese, Wael El-Deredy, Andrew Jackson, Eberhard Fetz
{"title":"Mechanisms of brain self-regulation: psychological factors, mechanistic models and neural substrates.","authors":"Ranganatha Sitaram, Andrea Sanchez-Corzo, Gabriela Vargas, Aurelio Cortese, Wael El-Deredy, Andrew Jackson, Eberhard Fetz","doi":"10.1098/rstb.2023.0093","DOIUrl":"10.1098/rstb.2023.0093","url":null,"abstract":"<p><p>While neurofeedback represents a promising tool for neuroscience and a brain self-regulation approach to psychological rehabilitation, the field faces several problems and challenges. Current research has shown great variability and even failure among human participants in learning to self-regulate target features of brain activity with neurofeedback. A better understanding of cognitive mechanisms, psychological factors and neural substrates underlying self-regulation might help improve neurofeedback's scientific and clinical practices. This article reviews the current understanding of the neural mechanisms of brain self-regulation by drawing on findings from human and animal studies in neurofeedback, brain-computer/machine interfaces and neuroprosthetics. In this article, we look closer at the following topics: cognitive processes and psychophysiological factors affecting self-regulation, theoretical models and neural substrates underlying self-regulation, and finally, we provide an outlook on the outstanding gaps in knowledge and technical challenges. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1915","pages":"20230093"},"PeriodicalIF":5.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信