Particle and Fibre Toxicology最新文献

筛选
英文 中文
Ferroptosis contributing to cardiomyocyte injury induced by silica nanoparticles via miR-125b-2-3p/HO-1 signaling. 纳米二氧化硅颗粒通过 miR-125b-2-3p/HO-1 信号传导导致心肌细胞损伤的铁变态反应。
IF 7.2 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-04-01 DOI: 10.1186/s12989-024-00579-5
Xueyan Li, Hailin Xu, Xinying Zhao, Yan Li, Songqing Lv, Wei Zhou, Ji Wang, Zhiwei Sun, Yanbo Li, Caixia Guo
{"title":"Ferroptosis contributing to cardiomyocyte injury induced by silica nanoparticles via miR-125b-2-3p/HO-1 signaling.","authors":"Xueyan Li, Hailin Xu, Xinying Zhao, Yan Li, Songqing Lv, Wei Zhou, Ji Wang, Zhiwei Sun, Yanbo Li, Caixia Guo","doi":"10.1186/s12989-024-00579-5","DOIUrl":"10.1186/s12989-024-00579-5","url":null,"abstract":"<p><strong>Background: </strong>Amorphous silica nanoparticles (SiNPs) have been gradually proven to threaten cardiac health, but pathogenesis has not been fully elucidated. Ferroptosis is a newly defined form of programmed cell death that is implicated in myocardial diseases. Nevertheless, its role in the adverse cardiac effects of SiNPs has not been described.</p><p><strong>Results: </strong>We first reported the induction of cardiomyocyte ferroptosis by SiNPs in both in vivo and in vitro. The sub-chronic exposure to SiNPs through intratracheal instillation aroused myocardial injury, characterized by significant inflammatory infiltration and collagen hyperplasia, accompanied by elevated CK-MB and cTnT activities in serum. Meanwhile, the activation of myocardial ferroptosis by SiNPs was certified by the extensive iron overload, declined FTH1 and FTL, and lipid peroxidation. The correlation analysis among detected indexes hinted ferroptosis was responsible for the SiNPs-aroused myocardial injury. Further, in vitro tests, SiNPs triggered iron overload and lipid peroxidation in cardiomyocytes. Concomitantly, altered expressions of TfR, DMT1, FTH1, and FTL indicated dysregulated iron metabolism of cardiomyocytes upon SiNP stimuli. Also, shrinking mitochondria with ridge fracture and ruptured outer membrane were noticed. To note, the ferroptosis inhibitor Ferrostatin-1 could effectively alleviate SiNPs-induced iron overload, lipid peroxidation, and myocardial cytotoxicity. More importantly, the mechanistic investigations revealed miR-125b-2-3p-targeted HO-1 as a key player in the induction of ferroptosis by SiNPs, probably through regulating the intracellular iron metabolism to mediate iron overload and ensuing lipid peroxidation.</p><p><strong>Conclusions: </strong>Our findings firstly underscored the fact that ferroptosis mediated by miR-125b-2-3p/HO-1 signaling was a contributor to SiNPs-induced myocardial injury, which could be of importance to elucidate the toxicity and provide new insights into the future safety applications of SiNPs-related nano products.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"21 1","pages":"17"},"PeriodicalIF":7.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10983742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140336489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro inflammation and toxicity assessment of pre- and post-incinerated organomodified nanoclays to macrophages using high-throughput screening approaches. 利用高通量筛选方法对焚化前和焚化后的有机改性纳米粘土对巨噬细胞的体外炎症和毒性进行评估。
IF 7.2 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-03-21 DOI: 10.1186/s12989-024-00577-7
Todd A Stueckle, Jake Jensen, Jayme P Coyle, Raymond Derk, Alixandra Wagner, Cerasela Zoica Dinu, Tiffany G Kornberg, Sherri A Friend, Alan Dozier, Sushant Agarwal, Rakesh K Gupta, Liying W Rojanasakul
{"title":"In vitro inflammation and toxicity assessment of pre- and post-incinerated organomodified nanoclays to macrophages using high-throughput screening approaches.","authors":"Todd A Stueckle, Jake Jensen, Jayme P Coyle, Raymond Derk, Alixandra Wagner, Cerasela Zoica Dinu, Tiffany G Kornberg, Sherri A Friend, Alan Dozier, Sushant Agarwal, Rakesh K Gupta, Liying W Rojanasakul","doi":"10.1186/s12989-024-00577-7","DOIUrl":"10.1186/s12989-024-00577-7","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Background: &lt;/strong&gt;Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 µg/cm&lt;sup&gt;2&lt;/sup&gt;) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1β release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1β release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusions: &lt;/strong&gt;Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lun","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"21 1","pages":"16"},"PeriodicalIF":7.2,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956245/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140175874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epithelial MAPK signaling directs endothelial NRF2 signaling and IL-8 secretion in a tri-culture model of the alveolar-microvascular interface following diesel exhaust particulate (DEP) exposure 柴油机废气微粒(DEP)暴露后,在肺泡-微血管界面的三层培养模型中,上皮 MAPK 信号指导内皮 NRF2 信号和 IL-8 分泌
IF 1 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-03-11 DOI: 10.1186/s12989-024-00576-8
Eva C. M. Vitucci, Alysha E. Simmons, Elizabeth M. Martin, Shaun D. McCullough
{"title":"Epithelial MAPK signaling directs endothelial NRF2 signaling and IL-8 secretion in a tri-culture model of the alveolar-microvascular interface following diesel exhaust particulate (DEP) exposure","authors":"Eva C. M. Vitucci, Alysha E. Simmons, Elizabeth M. Martin, Shaun D. McCullough","doi":"10.1186/s12989-024-00576-8","DOIUrl":"https://doi.org/10.1186/s12989-024-00576-8","url":null,"abstract":"Particulate matter 2.5 (PM2.5) deposition in the lung’s alveolar capillary region (ACR) is significantly associated with respiratory disease development, yet the molecular mechanisms are not completely understood. Adverse responses that promote respiratory disease development involve orchestrated, intercellular signaling between multiple cell types within the ACR. We investigated the molecular mechanisms elicited in response to PM2.5 deposition in the ACR, in an in vitro model that enables intercellular communication between multiple resident cell types of the ACR. An in vitro, tri-culture model of the ACR, incorporating alveolar-like epithelial cells (NCI-H441), pulmonary fibroblasts (IMR90), and pulmonary microvascular endothelial cells (HULEC) was developed to investigate cell type-specific molecular responses to a PM2.5 exposure in an in-vivo-like model. This tri-culture in vitro model was termed the alveolar capillary region exposure (ACRE) model. Alveolar epithelial cells in the ACRE model were exposed to a suspension of diesel exhaust particulates (DEP) (20 µg/cm2) with an average diameter of 2.5 µm. Alveolar epithelial barrier formation, and transcriptional and protein expression alterations in the directly exposed alveolar epithelial and the underlying endothelial cells were investigated over a 24 h DEP exposure. Alveolar epithelial barrier formation was not perturbed by the 24 h DEP exposure. Despite no alteration in barrier formation, we demonstrate that alveolar epithelial DEP exposure induces transcriptional and protein changes in both the alveolar epithelial cells and the underlying microvascular endothelial cells. Specifically, we show that the underlying microvascular endothelial cells develop redox dysfunction and increase proinflammatory cytokine secretion. Furthermore, we demonstrate that alveolar epithelial MAPK signaling modulates the activation of NRF2 and IL-8 secretion in the underlying microvascular endothelial cells. Endothelial redox dysfunction and increased proinflammatory cytokine secretion are two common events in respiratory disease development. These findings highlight new, cell-type specific roles of the alveolar epithelium and microvascular endothelium in the ACR in respiratory disease development following PM2.5 exposure. Ultimately, these data expand our current understanding of respiratory disease development following particle exposures and illustrate the utility of multicellular in vitro systems for investigating respiratory tract health.","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"16 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140097590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring redox stress in human airway epithelial cells exposed to woodsmoke at an air-liquid interface. 监测暴露在空气-液体界面木烟中的人体气道上皮细胞的氧化还原压力。
IF 7.2 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-03-08 DOI: 10.1186/s12989-024-00575-9
Aiman Abzhanova, Jon Berntsen, Edward R Pennington, Lisa Dailey, Syed Masood, Ingrid George, Nina Warren, Joseph Martin, Michael D Hays, Andrew J Ghio, Jason P Weinstein, Yong Ho Kim, Earl Puckett, James M Samet
{"title":"Monitoring redox stress in human airway epithelial cells exposed to woodsmoke at an air-liquid interface.","authors":"Aiman Abzhanova, Jon Berntsen, Edward R Pennington, Lisa Dailey, Syed Masood, Ingrid George, Nina Warren, Joseph Martin, Michael D Hays, Andrew J Ghio, Jason P Weinstein, Yong Ho Kim, Earl Puckett, James M Samet","doi":"10.1186/s12989-024-00575-9","DOIUrl":"10.1186/s12989-024-00575-9","url":null,"abstract":"<p><p>Wildland fires contribute significantly to the ambient air pollution burden worldwide, causing a range of adverse health effects in exposed populations. The toxicity of woodsmoke, a complex mixture of gases, volatile organic compounds, and particulate matter, is commonly studied in vitro using isolated exposures of conventionally cultured lung cells to either resuspended particulate matter or organic solvent extracts of smoke, leading to incomplete toxicity evaluations. This study aimed to improve our understanding of the effects of woodsmoke inhalation by building an advanced in vitro exposure system that emulates human exposure of the airway epithelium. We report the development and characterization of an innovative system that permits live-cell monitoring of the intracellular redox status of differentiated primary human bronchial epithelial cells cultured at an air-liquid interface (pHBEC-ALI) as they are exposed to unfractionated woodsmoke generated in a tube furnace in real time. pHBEC-ALI exposed to freshly generated woodsmoke showed oxidative changes that were dose-dependent and reversible, and not attributable to carbon monoxide exposure. These findings show the utility of this novel system for studying the molecular initiating events underlying woodsmoke-induced toxicity in a physiologically relevant in vitro model, and its potential to provide biological plausibility for risk assessment and public health measures.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"21 1","pages":"14"},"PeriodicalIF":7.2,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10921608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exposure to high dose of polystyrene nanoplastics causes trophoblast cell apoptosis and induces miscarriage 接触高剂量聚苯乙烯纳米塑料会导致滋养层细胞凋亡并诱发流产
IF 1 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-03-07 DOI: 10.1186/s12989-024-00574-w
Shukun Wan, Xiaoqing Wang, Weina Chen, Manli Wang, Jingsong Zhao, Zhongyan Xu, Rong Wang, Chenyang Mi, Zhaodian Zheng, Huidong Zhang
{"title":"Exposure to high dose of polystyrene nanoplastics causes trophoblast cell apoptosis and induces miscarriage","authors":"Shukun Wan, Xiaoqing Wang, Weina Chen, Manli Wang, Jingsong Zhao, Zhongyan Xu, Rong Wang, Chenyang Mi, Zhaodian Zheng, Huidong Zhang","doi":"10.1186/s12989-024-00574-w","DOIUrl":"https://doi.org/10.1186/s12989-024-00574-w","url":null,"abstract":"With rapid increase in the global use of various plastics, microplastics (MPs) and nanoplastics (NPs) pollution and their adverse health effects have attracted global attention. MPs have been detected out in human body and both MPs and NPs showed female reproductive toxicological effects in animal models. Miscarriage (abnormal early embryo loss), accounting for 15-25% pregnant women worldwide, greatly harms human reproduction. However, the adverse effects of NPs on miscarriage have never been explored. In this study, we identified that polystyrene (PS) plastics particles were present in women villous tissues. Their levels were higher in villous tissues of unexplained recurrent miscarriage (RM) patients vs. healthy control (HC) group. Furthermore, mouse assays further confirmed that exposure to polystyrene nanoplastics (PS-NPs, 50 nm in diameter, 50 or 100 mg/kg) indeed induced miscarriage. In mechanism, PS-NPs exposure (50, 100, 150, or 200 µg/mL) increased oxidative stress, decreased mitochondrial membrane potential, and increased apoptosis in human trophoblast cells by activating Bcl-2/Cleaved-caspase-2/Cleaved-caspase-3 signaling through mitochondrial pathway. The alteration in this signaling was consistent in placental tissues of PS-NPs-exposed mouse model and in villous tissues of unexplained RM patients. Supplement with Bcl-2 could efficiently suppress apoptosis in PS-NPs-exposed trophoblast cells and reduce apoptosis and alleviate miscarriage in PS-NPs-exposed pregnant mouse model. Exposure to PS-NPs activated Bcl-2/Cleaved-caspase-2/Cleaved-caspase-3, leading to excessive apoptosis in human trophoblast cells and in mice placental tissues, further inducing miscarriage. ","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"5 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140054687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrophage-derived exosomal HMGB3 regulates silica-induced pulmonary inflammation by promoting M1 macrophage polarization and recruitment 巨噬细胞源性外泌体 HMGB3 通过促进 M1 型巨噬细胞的极化和招募调节二氧化硅诱导的肺部炎症
IF 1 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-03-07 DOI: 10.1186/s12989-024-00568-8
Xiaofeng Qin, Zhiyuan Niu, Hui Chen, Yongbin Hu
{"title":"Macrophage-derived exosomal HMGB3 regulates silica-induced pulmonary inflammation by promoting M1 macrophage polarization and recruitment","authors":"Xiaofeng Qin, Zhiyuan Niu, Hui Chen, Yongbin Hu","doi":"10.1186/s12989-024-00568-8","DOIUrl":"https://doi.org/10.1186/s12989-024-00568-8","url":null,"abstract":"Chronic inflammation and fibrosis are characteristics of silicosis, and the inflammatory mediators involved in silicosis have not been fully elucidated. Recently, macrophage-derived exosomes have been reported to be inflammatory modulators, but their role in silicosis has not been explored. The purpose of the present study was to investigate the role of macrophage-derived exosomal high mobility group box 3 (HMGB3) in silica-induced pulmonary inflammation. The induction of the inflammatory response and the recruitment of monocytes/macrophages were evaluated by immunofluorescence, flow cytometry and transwell assays. The expression of inflammatory cytokines was examined by RT–PCR and ELISA, and the signalling pathways involved were examined by western blot analysis. HMGB3 expression was increased in exosomes derived from silica-exposed macrophages. Exosomal HMGB3 significantly upregulated the expression of inflammatory cytokines, activated the STAT3/MAPK (ERK1/2 and p38)/NF-κB pathways in monocytes/macrophages, and promoted the migration of these cells by CCR2. Exosomal HMGB3 is a proinflammatory modulator of silica-induced inflammation that promotes the inflammatory response and recruitment of monocytes/macrophages by regulating the activation of the STAT3/MAPK/NF-κB/CCR2 pathways.","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"61 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140054539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Perinatal foodborne titanium dioxide exposure-mediated dysbiosis predisposes mice to develop colitis through life 更正:围产期食源性二氧化钛暴露介导的菌群失调使小鼠终生易患结肠炎
IF 1 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-03-06 DOI: 10.1186/s12989-024-00570-0
Caroline Carlé, Delphine Boucher, Luisa Morelli, Camille Larue, Ekaterina Ovtchinnikova, Louise Battut, Kawthar Boumessid, Melvin Airaud, Muriel Quaranta-Nicaise, Jean-Luc Ravanat, Gilles Dietrich, Sandrine Menard, Gérard Eberl, Nicolas Barnich, Emmanuel Mas, Marie Carriere, Ziad Al Nabhani, Frédérick Barreau
{"title":"Correction: Perinatal foodborne titanium dioxide exposure-mediated dysbiosis predisposes mice to develop colitis through life","authors":"Caroline Carlé, Delphine Boucher, Luisa Morelli, Camille Larue, Ekaterina Ovtchinnikova, Louise Battut, Kawthar Boumessid, Melvin Airaud, Muriel Quaranta-Nicaise, Jean-Luc Ravanat, Gilles Dietrich, Sandrine Menard, Gérard Eberl, Nicolas Barnich, Emmanuel Mas, Marie Carriere, Ziad Al Nabhani, Frédérick Barreau","doi":"10.1186/s12989-024-00570-0","DOIUrl":"https://doi.org/10.1186/s12989-024-00570-0","url":null,"abstract":"&lt;p&gt;&lt;b&gt;Correction: Particle and Fibre Toxicology (2023) 20:45&lt;/b&gt;&lt;b&gt;https://doi.org/10.1186/s12989-023-00555-5&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Following publication of the original article [1], the authors reported some spelling and bibliograph errors. Below is a table of corrections which have been implemented in the original article.&lt;/p&gt;&lt;p&gt;The original article [1] has been corrected.&lt;/p&gt;&lt;table&gt;&lt;thead&gt;&lt;tr&gt;&lt;th&gt;&lt;p&gt;Section&lt;/p&gt;&lt;/th&gt;&lt;th&gt;&lt;p&gt;Originally published text&lt;/p&gt;&lt;/th&gt;&lt;th&gt;&lt;p&gt;Corrected text&lt;/p&gt;&lt;/th&gt;&lt;/tr&gt;&lt;/thead&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td&gt;&lt;p&gt;Abstract&lt;/p&gt;&lt;/td&gt;&lt;td&gt;&lt;p&gt;Perinatal exposure to titanium dioxide (TiO&lt;sub&gt;2&lt;/sub&gt;), as a foodborne particle, may influence the intestinal barrier function and the susceptibility to develop inflammatory bowel disease (IBD) later in life&lt;/p&gt;&lt;/td&gt;&lt;td&gt;&lt;p&gt;Perinatal exposure to titanium dioxide (TiO&lt;sub&gt;2&lt;/sub&gt;), as a foodborne particle, may influence the intestinal barrier function and the susceptibility to develop inflammatory bowel diseases (IBD) later in life&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;&lt;p&gt;Background&lt;/p&gt;&lt;/td&gt;&lt;td&gt;&lt;p&gt;A significant number of human chronic diseases (inflammatory, metabolic …) is linked to a deficiency of the IBF and some of them, like IBD, exhibit alterations of the four IBF’s compartments [8, 9]&lt;/p&gt;&lt;/td&gt;&lt;td&gt;&lt;p&gt;significant number of human chronic diseases (inflammatory, metabolic …) is linked to a deficiency of the IBF and some of them, like IBD, exhibit alterations of the three IBF’s compartments [8, 9]&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt; &lt;/td&gt;&lt;td&gt;&lt;p&gt;To evaluate this hypothesis, we exposed pregnant female C57BL/6 mice to 9 mg E171/kg b.w./day via their drinking water,from the beginning of gestation until 3 weeks postdelivery&lt;/p&gt;&lt;/td&gt;&lt;td&gt;&lt;p&gt;To evaluate this hypothesis, we exposed pregnant female C57BL/6 mice to 9 mg E171/kg b.w./day via their drinking water, from the beginning of gestation until 4 weeks postdelivery&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt; &lt;/td&gt;&lt;td&gt;&lt;p&gt;This exposure concentration is in the lower range of the estimated daily exposure of human adults, which ranges between 5.5 and 10.4 mg/kg b.w./day according to EFSA’s estimations [ref 35]&lt;/p&gt;&lt;/td&gt;&lt;td&gt;&lt;p&gt;This exposure concentration is in the lower range of the estimated daily exposure of human adults, which ranges between 5.5 and 10.4 mg/kg b.w./day according to EFSA’s estimations [29]&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt; &lt;/td&gt;&lt;td&gt;&lt;p&gt;When considering the guidances on dose conversion between human and animal exposure, such as the Nair and Jacob practice guide or FDA’s guidelines, we previously estimated that doses up to 50–60 mg/kg b.w./day in mice would be realistic [ref notre revue PFT] confirming that the dose used in the present study can be considered as a low exposure dose&lt;/p&gt;&lt;/td&gt;&lt;td&gt;&lt;p&gt;When considering the guidances on dose conversion between human and animal exposure, such as the Nair and Jacob practice guide or FDA’s guidelines, we previously estimated that doses up to 50–60 mg/kg b.w./day in mice would be realistic [14] confirming that the dose used in the present study can be considered as a low exposure dose&lt;/p&gt;&lt;/","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"27 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140046630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Results from omic approaches in rat or mouse models exposed to inhaled crystalline silica: a systematic review 暴露于吸入结晶二氧化硅的大鼠或小鼠模型的奥米克方法结果:系统综述
IF 1 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-03-01 DOI: 10.1186/s12989-024-00573-x
Laura Morin, Valérie Lecureur, Alain Lescoat
{"title":"Results from omic approaches in rat or mouse models exposed to inhaled crystalline silica: a systematic review","authors":"Laura Morin, Valérie Lecureur, Alain Lescoat","doi":"10.1186/s12989-024-00573-x","DOIUrl":"https://doi.org/10.1186/s12989-024-00573-x","url":null,"abstract":"Crystalline silica (cSiO2) is a mineral found in rocks; workers from the construction or denim industries are particularly exposed to cSiO2 through inhalation. cSiO2 inhalation increases the risk of silicosis and systemic autoimmune diseases. Inhaled cSiO2 microparticles can reach the alveoli where they induce inflammation, cell death, auto-immunity and fibrosis but the specific molecular pathways involved in these cSiO2 effects remain unclear. This systematic review aims to provide a comprehensive state of the art on omic approaches and exposure models used to study the effects of inhaled cSiO2 in mice and rats and to highlight key results from omic data in rodents also validated in human. The protocol of systematic review follows PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Eligible articles were identified in PubMed, Embase and Web of Science. The search strategy included original articles published after 1990 and written in English which included mouse or rat models exposed to cSiO2 and utilized omic approaches to identify pathways modulated by cSiO2. Data were extracted and quality assessment was based on the SYRCLE’s Risk of Bias tool for animal studies. Rats and male rodents were the more used models while female rodents and autoimmune prone models were less studied. Exposure of animals were both acute and chronic and the timing of outcome measurement through omics approaches were homogeneously distributed. Transcriptomic techniques were more commonly performed while proteomic, metabolomic and single-cell omic methods were less utilized. Immunity and inflammation were the main domains modified by cSiO2 exposure in lungs of mice and rats. Less than 20% of the results obtained in rodents were finally verified in humans. Omic technics offer new insights on the effects of cSiO2 exposure in mice and rats although the majority of data still need to be validated in humans. Autoimmune prone model should be better characterised and systemic effects of cSiO2 need to be further studied to better understand cSiO2-induced autoimmunity. Single-cell omics should be performed to inform on pathological processes induced by cSiO2 exposure.","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"5 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140008100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zinc oxide nanoparticles exacerbate skin epithelial cell damage by upregulating pro-inflammatory cytokines and exosome secretion in M1 macrophages following UVB irradiation-induced skin injury. 氧化锌纳米颗粒通过上调促炎细胞因子和外泌体分泌,加剧紫外线照射诱发的皮肤损伤后的皮肤上皮细胞损伤。
IF 7.2 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-02-28 DOI: 10.1186/s12989-024-00571-z
Bour-Jr Wang, Yu-Ying Chen, Hui-Hsuan Chang, Rong-Jane Chen, Ying-Jan Wang, Yu-Hsuan Lee
{"title":"Zinc oxide nanoparticles exacerbate skin epithelial cell damage by upregulating pro-inflammatory cytokines and exosome secretion in M1 macrophages following UVB irradiation-induced skin injury.","authors":"Bour-Jr Wang, Yu-Ying Chen, Hui-Hsuan Chang, Rong-Jane Chen, Ying-Jan Wang, Yu-Hsuan Lee","doi":"10.1186/s12989-024-00571-z","DOIUrl":"10.1186/s12989-024-00571-z","url":null,"abstract":"<p><strong>Background: </strong>Zinc oxide nanoparticles (ZnONPs) are common materials used in skin-related cosmetics and sunscreen products due to their whitening and strong UV light absorption properties. Although the protective effects of ZnONPs against UV light in intact skin have been well demonstrated, the effects of using ZnONPs on damaged or sunburned skin are still unclear. In this study, we aimed to reveal the detailed underlying mechanisms related to keratinocytes and macrophages exposed to UVB and ZnONPs.</p><p><strong>Results: </strong>We demonstrated that ZnONPs exacerbated mouse skin damage after UVB exposure, followed by increased transepidermal water loss (TEWL) levels, cell death and epithelial thickness. In addition, ZnONPs could penetrate through the damaged epithelium, gain access to the dermis cells, and lead to severe inflammation by activation of M1 macrophage. Mechanistic studies indicated that co-exposure of keratinocytes to UVB and ZnONPs lysosomal impairment and autophagy dysfunction, which increased cell exosome release. However, these exosomes could be taken up by macrophages, which accelerated M1 macrophage polarization. Furthermore, ZnONPs also induced a lasting inflammatory response in M1 macrophages and affected epithelial cell repair by regulating the autophagy-mediated NLRP3 inflammasome and macrophage exosome secretion.</p><p><strong>Conclusions: </strong>Our findings propose a new concept for ZnONP-induced skin toxicity mechanisms and the safety issue of ZnONPs application on vulnerable skin. The process involved an interplay of lysosomal impairment, autophagy-mediated NLRP3 inflammasome and macrophage exosome secretion. The current finding is valuable for evaluating the effects of ZnONPs for cosmetics applications.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"21 1","pages":"9"},"PeriodicalIF":7.2,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10900617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential pulmonary toxicity and autoantibody formation in genetically distinct mouse strains following combined exposure to silica and diesel exhaust particles. 基因不同的小鼠品系在联合接触二氧化硅和柴油机废气颗粒后肺部毒性和自身抗体形成的差异。
IF 7.2 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-02-27 DOI: 10.1186/s12989-024-00569-7
Lisa Mf Janssen, Frauke Lemaire, Nora Fopke Marain, Steven Ronsmans, Natasja Heylen, Arno Vanstapel, Greetje Vande Velde, Jeroen Aj Vanoirbeek, Kenneth Michael Pollard, Manosij Ghosh, Peter Hm Hoet
{"title":"Differential pulmonary toxicity and autoantibody formation in genetically distinct mouse strains following combined exposure to silica and diesel exhaust particles.","authors":"Lisa Mf Janssen, Frauke Lemaire, Nora Fopke Marain, Steven Ronsmans, Natasja Heylen, Arno Vanstapel, Greetje Vande Velde, Jeroen Aj Vanoirbeek, Kenneth Michael Pollard, Manosij Ghosh, Peter Hm Hoet","doi":"10.1186/s12989-024-00569-7","DOIUrl":"10.1186/s12989-024-00569-7","url":null,"abstract":"<p><strong>Background: </strong>Inhalation of airborne particulate matter, such as silica and diesel exhaust particles, poses serious long-term respiratory and systemic health risks. Silica exposure can lead to silicosis and systemic autoimmune diseases, while DEP exposure is linked to asthma and cancer. Combined exposure to silica and DEP, common in mining, may have more severe effects. This study investigates the separate and combined effects of occupational-level silica and ambient-level DEP on lung injury, inflammation, and autoantibody formation in two genetically distinct mouse strains, thereby aiming at understanding the interplay between genetic susceptibility, particulate exposure, and disease outcomes. Silica and diesel exhaust particles were administered to mice via oropharyngeal aspiration. Assessments of lung injury and host response included in vivo lung micro-computed tomography, lung function tests, bronchoalveolar lavage fluid analysis including inflammatory cytokines and antinuclear antibodies, and histopathology with particle colocalization.</p><p><strong>Results: </strong>The findings highlight the distinct effects of silica and diesel exhaust particles (DEP) on lung injury, inflammation, and autoantibody formation in C57BL/6J and NOD/ShiLtJ mice. Silica exposure elicited a well-established inflammatory response marked by inflammatory infiltrates, release of cytokines, and chemokines, alongside mild fibrosis, indicated by collagen deposition in the lungs of both C57BL/6J and NOD/ShilLtJ mice. Notably, these strains exhibited divergent responses in terms of respiratory function and lung volumes, as assessed through micro-computed tomography. Additionally, silica exposure induced airway hyperreactivity and elevated antinuclear antibody levels in bronchoalveolar lavage fluid, particularly prominent in NOD/ShiLtJ mice. Moreover, antinuclear antibodies correlated with extent of lung inflammation in NOD/ShiLTJ mice. Lung tissue analysis revealed DEP loaded macrophages and co-localization of silica and DEP particles. However, aside from contributing to airway hyperreactivity specifically in NOD/ShiLtJ mice, the ambient-level DEP did not significantly amplify the effects induced by silica. There was no evidence of synergistic or additive interaction between these specific doses of silica and DEP in inducing lung damage or inflammation in either of the mouse strains.</p><p><strong>Conclusion: </strong>Mouse strain variations exerted a substantial influence on the development of silica induced lung alterations. Furthermore, the additional impact of ambient-level DEP on these silica-induced effects was minimal.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"21 1","pages":"8"},"PeriodicalIF":7.2,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139972967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信