{"title":"Robust epsilon visibility","authors":"Florent Duguet, G. Drettakis","doi":"10.1145/566570.566618","DOIUrl":"https://doi.org/10.1145/566570.566618","url":null,"abstract":"Analytic visibility algorithms, for example methods which compute a subdivided mesh to represent shadows, are notoriously unrobust and hard to use in practice. We present a new method based on a generalized definition of extremal stabbing lines, which are the extremities of shadow boundaries. We treat scenes containing multiple edges or vertices in degenerate configurations, (e.g., collinear or coplanar). We introduce a robust ε method to determine whether each generalized extremal stabbing line is blocked, or is touched by these scene elements, and thus added to the line's generators. We develop robust blocker predicates for polygons which are smaller than ε. For larger ε values, small shadow features merge and eventually disappear. We can thus robustly connect generalized extremal stabbing lines in degenerate scenes to form shadow boundaries. We show that our approach is consistent, and that shadow boundary connectivity is preserved when features merge. We have implemented our algorithm, and show that we can robustly compute analytic shadow boundaries to the precision of our chosen ε threshold for non-trivial models, containing numerous degeneracies.","PeriodicalId":197746,"journal":{"name":"Proceedings of the 29th annual conference on Computer graphics and interactive techniques","volume":"301 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122800842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeffrey Smith, J. Hodgins, I. Oppenheim, A. Witkin
{"title":"Creating models of truss structures with optimization","authors":"Jeffrey Smith, J. Hodgins, I. Oppenheim, A. Witkin","doi":"10.1145/566570.566580","DOIUrl":"https://doi.org/10.1145/566570.566580","url":null,"abstract":"We present a method for designing truss structures, a common and complex category of buildings, using non-linear optimization. Truss structures are ubiquitous in the industrialized world, appearing as bridges, towers, roof supports and building exoskeletons, yet are complex enough that modeling them by hand is time consuming and tedious. We represent trusses as a set of rigid bars connected by pin joints, which may change location during optimization. By including the location of the joints as well as the strength of individual beams in our design variables, we can simultaneously optimize the geometry and the mass of structures. We present the details of our technique together with examples illustrating its use, including comparisons with real structures.","PeriodicalId":197746,"journal":{"name":"Proceedings of the 29th annual conference on Computer graphics and interactive techniques","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132823802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physiological measures of presence in stressful virtual environments","authors":"M. Meehan, Brent Insko, M. Whitton, F. Brooks","doi":"10.1145/566570.566630","DOIUrl":"https://doi.org/10.1145/566570.566630","url":null,"abstract":"A common measure of the quality or effectiveness of a virtual environment (VE) is the mount of presence it evokes in users. Presence is often defined as the sense of being there in a VE. There has been much debate about the best way to measure presence, and presence researchers need, and have sought, a measure that is reliable, valid, sensitive, and objective.We hypothesized that to the degree that a VE seems real, it would evoke physiological responses similar to those evoked by the corresponding real environment, and that greater presence would evoke a greater response. To examine this, we conducted three experiments, the results of which support the use of physiological reaction as a reliable, valid, sensitive, and objective presence measure. The experiments compared participants' physiological reactions to a non-threatening virtual room and their reactions to a stressful virtual height situation. We found that change in heart rate satisfied our requirements for a measure of presence, change in skin conductance did to a lesser extent, and that change in skin temperature did not. Moreover, the results showed that inclusion of a passive haptic element in the VE significantly increased presence and that for presence evoked: 30FPS > 20FPS > 15FPS.","PeriodicalId":197746,"journal":{"name":"Proceedings of the 29th annual conference on Computer graphics and interactive techniques","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133743721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geometry images","authors":"X. Gu, S. Gortler, Hugues Hoppe","doi":"10.1145/566570.566589","DOIUrl":"https://doi.org/10.1145/566570.566589","url":null,"abstract":"Surface geometry is often modeled with irregular triangle meshes. The process of remeshing refers to approximating such geometry using a mesh with (semi)-regular connectivity, which has advantages for many graphics applications. However, current techniques for remeshing arbitrary surfaces create only semi-regular meshes. The original mesh is typically decomposed into a set of disk-like charts, onto which the geometry is parametrized and sampled. In this paper, we propose to remesh an arbitrary surface onto a completely regular structure we call a geometry image. It captures geometry as a simple 2D array of quantized points. Surface signals like normals and colors are stored in similar 2D arrays using the same implicit surface parametrization --- texture coordinates are absent. To create a geometry image, we cut an arbitrary mesh along a network of edge paths, and parametrize the resulting single chart onto a square. Geometry images can be encoded using traditional image compression algorithms, such as wavelet-based coders.","PeriodicalId":197746,"journal":{"name":"Proceedings of the 29th annual conference on Computer graphics and interactive techniques","volume":"518 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133877183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Least squares conformal maps for automatic texture atlas generation","authors":"B. Lévy, Sylvain Petitjean, N. Ray, J. Maillot","doi":"10.1145/566570.566590","DOIUrl":"https://doi.org/10.1145/566570.566590","url":null,"abstract":"A Texture Atlas is an efficient color representation for 3D Paint Systems. The model to be textured is decomposed into charts homeomorphic to discs, each chart is parameterized, and the unfolded charts are packed in texture space. Existing texture atlas methods for triangulated surfaces suffer from several limitations, requiring them to generate a large number of small charts with simple borders. The discontinuities between the charts cause artifacts, and make it difficult to paint large areas with regular patterns.In this paper, our main contribution is a new quasi-conformal parameterization method, based on a least-squares approximation of the Cauchy-Riemann equations. The so-defined objective function minimizes angle deformations, and we prove the following properties: the minimum is unique, independent of a similarity in texture space, independent of the resolution of the mesh and cannot generate triangle flips. The function is numerically well behaved and can therefore be very efficiently minimized. Our approach is robust, and can parameterize large charts with complex borders.We also introduce segmentation methods to decompose the model into charts with natural shapes, and a new packing algorithm to gather them in texture space. We demonstrate our approach applied to paint both scanned and modeled data sets.","PeriodicalId":197746,"journal":{"name":"Proceedings of the 29th annual conference on Computer graphics and interactive techniques","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123315572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real-time 3D model acquisition","authors":"S. Rusinkiewicz, Olaf A. Hall-Holt, M. Levoy","doi":"10.1145/566570.566600","DOIUrl":"https://doi.org/10.1145/566570.566600","url":null,"abstract":"The digitization of the 3D shape of real objects is a rapidly expanding field, with applications in entertainment, design, and archaeology. We propose a new 3D model acquisition system that permits the user to rotate an object by hand and see a continuously-updated model as the object is scanned. This tight feedback loop allows the user to find and fill holes in the model in real time, and determine when the object has been completely covered. Our system is based on a 60 Hz. structured-light rangefinder, a real-time variant of ICP (iterative closest points) for alignment, and point-based merging and rendering algorithms. We demonstrate the ability of our prototype to scan objects faster and with greater ease than conventional model acquisition pipelines.","PeriodicalId":197746,"journal":{"name":"Proceedings of the 29th annual conference on Computer graphics and interactive techniques","volume":"5116 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127182730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Feature-based light field morphing","authors":"Zhunping Zhang, Lifeng Wang, B. Guo, H. Shum","doi":"10.1145/566570.566602","DOIUrl":"https://doi.org/10.1145/566570.566602","url":null,"abstract":"We present a feature-based technique for morphing 3D objects represented by light fields. Our technique enables morphing of image-based objects whose geometry and surface properties are too difficult to model with traditional vision and graphics techniques. Light field morphing is not based on 3D reconstruction; instead it relies on ray correspondence, i.e., the correspondence between rays of the source and target light fields. We address two main issues in light field morphing: feature specification and visibility changes. For feature specification, we develop an intuitive and easy-to-use user interface (UI). The key to this UI is feature polygons, which are intuitively specified as 3D polygons and are used as a control mechanism for ray correspondence in the abstract 4D ray space. For handling visibility changes due to object shape changes, we introduce ray-space warping. Ray-space warping can fill arbitrarily large holes caused by object shape changes; these holes are usually too large to be properly handled by traditional image warping. Our method can deal with non-Lambertian surfaces, including specular surfaces (with dense light fields). We demonstrate that light field morphing is an effective and easy-to-use technqiue that can generate convincing 3D morphing effects.","PeriodicalId":197746,"journal":{"name":"Proceedings of the 29th annual conference on Computer graphics and interactive techniques","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126549808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Jigsaw image mosaics","authors":"Junh-Nam Kim, F. Pellacini","doi":"10.1145/566570.566633","DOIUrl":"https://doi.org/10.1145/566570.566633","url":null,"abstract":"This paper introduces a new kind of mosaic, called Jigsaw Image Mosaic (JIM), where image tiles of arbitrary shape are used to compose the final picture. The generation of a Jigsaw Image Mosaic is a solution to the following problem: given an arbitrarily-shaped container image and a set of arbitrarily-shaped image tiles, fill the container as compactly as possible with tiles of similar color to the container taken from the input set while optionally deforming them slightly to achieve a more visually-pleasing effect. We approach the problem by defining a mosaic as the tile configuration that minimizes a mosaicing energy function. We introduce a general energy-based framework for mosaicing problems that extends some of the existing algorithms such as Photomosaics and Simulated Decorative Mosaics. We also present a fast algorithm to solve the mosaicing problem at an acceptable computational cost. We demonstrate the use of our method by applying it to a wide range of container images and tiles.","PeriodicalId":197746,"journal":{"name":"Proceedings of the 29th annual conference on Computer graphics and interactive techniques","volume":"105 3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115160323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Progressive lossless compression of arbitrary simplicial complexes","authors":"Pierre-Marie Gandoin, O. Devillers","doi":"10.1145/566570.566591","DOIUrl":"https://doi.org/10.1145/566570.566591","url":null,"abstract":"Efficient algorithms for compressing geometric data have been widely developed in the recent years, but they are mainly designed for closed polyhedral surfaces which are manifold or \"nearly manifold\". We propose here a progressive geometry compression scheme which can handle manifold models as well as \"triangle soups\" and 3D tetrahedral meshes. The method is lossless when the decompression is complete which is extremely important in some domains such as medical or finite element.While most existing methods enumerate the vertices of the mesh in an order depending on the connectivity, we use a kd-tree technique [Devillers and Gandoin 2000] which does not depend on the connectivity. Then we compute a compatible sequence of meshes which can be encoded using edge expansion [Hoppe et al. 1993] and vertex split [Popović and Hoppe 1997].The main contributions of this paper are: the idea of using the kd-tree encoding of the geometry to drive the construction of a sequence of meshes, an improved coding of the edge expansion and vertex split since the vertices to split are implicitly defined, a prediction scheme which reduces the code for simplices incident to the split vertex, and a new generalization of the edge expansion operation to tetrahedral meshes.","PeriodicalId":197746,"journal":{"name":"Proceedings of the 29th annual conference on Computer graphics and interactive techniques","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115166758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Debevec, Andreas Wenger, C. Tchou, A. Gardner, Jamie Waese, Tim Hawkins
{"title":"A lighting reproduction approach to live-action compositing","authors":"P. Debevec, Andreas Wenger, C. Tchou, A. Gardner, Jamie Waese, Tim Hawkins","doi":"10.1145/566570.566614","DOIUrl":"https://doi.org/10.1145/566570.566614","url":null,"abstract":"We describe a process for compositing a live performance of an actor into a virtual set wherein the actor is consistently illuminated by the virtual environment. The Light Stage used in this work is a two-meter sphere of inward-pointing RGB light emitting diodes focused on the actor, where each light can be set to an arbitrary color and intensity to replicate a real-world or virtual lighting environment. We implement a digital two-camera infrared matting system to composite the actor into the background plate of the environment without affecting the visible-spectrum illumination on the actor. The color reponse of the system is calibrated to produce correct color renditions of the actor as illuminated by the environment. We demonstrate moving-camera composites of actors into real-world environments and virtual sets such that the actor is properly illuminated by the environment into which they are composited.","PeriodicalId":197746,"journal":{"name":"Proceedings of the 29th annual conference on Computer graphics and interactive techniques","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124877340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}