{"title":"Light Manipulation of Photonic-Structured OLEDs","authors":"F. So","doi":"10.1117/12.2602804","DOIUrl":"https://doi.org/10.1117/12.2602804","url":null,"abstract":"OLEDs are thin-film devices consisting of multilayers of organic thin films sandwiched between a metal and an ITO electrodes. Because of the different refractive indices of the layers in the thin film stack, different optical modes are trapped in the device. In this talk, we will first discuss the physics of these optical modes and describe techniques to characterize them. We will then describe how to use various photonic structures to maximize the light output and manipulate these optical modes to control the polarization as well as directionality to achieve beam shaping.","PeriodicalId":19672,"journal":{"name":"Organic and Hybrid Light Emitting Materials and Devices XXV","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78130582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local polarity effects on TADF dynamics as probed by single molecule fluorescence","authors":"L. Peteanu, R. Chakraborty, E. Fossum","doi":"10.1117/12.2594946","DOIUrl":"https://doi.org/10.1117/12.2594946","url":null,"abstract":"Molecules that undergo thermally activated delayed fluorescence (TADF) represent an important class of systems for the design of efficient organic lighting (OLEDS) because they utilize both singlet and triplet excitons for electrically-generated light emission. Most molecules of this type have considerable charge transfer (CT) character as this is known to result in nearly degenerate singlet and triplet energies. Another important consequence of this CT character is that the TADF efficiency as well as the emission wavelength and color purity are highly sensitive to the polarity of the local environment. Here we present data demonstrating the effect of local polarity on the fluorescence intermittency (blinking) of single TADF molecules isolated in a series of host matrices of varying dielectric constants. The on and off times of the fluorescence of single chromophores are shown to be highly sensitive to local polarity and are used to model the dynamics of singlet-triplet crossing.","PeriodicalId":19672,"journal":{"name":"Organic and Hybrid Light Emitting Materials and Devices XXV","volume":"688 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74744991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermal management allows for brighter and more stable metal halide perovskite light emitting diodes","authors":"Barry P Rand","doi":"10.1117/12.2593127","DOIUrl":"https://doi.org/10.1117/12.2593127","url":null,"abstract":"","PeriodicalId":19672,"journal":{"name":"Organic and Hybrid Light Emitting Materials and Devices XXV","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87432767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Moulé, Ian E. Jacobs, Z. I. Bedolla-Valdez, Goktug Gonel, Camila Cendra, Jun Li, Brandon T. Rotondo, David J. Bilsky, Ryan Lewis, Rui Xiao, Alejandra N. Ayala Oviedo, Alice S. Fergerson, Zekun Chen, Dong Yu, A. Salleo
{"title":"Super-resolution photothermal patterning in conductive polymers and nanowire patterning","authors":"A. Moulé, Ian E. Jacobs, Z. I. Bedolla-Valdez, Goktug Gonel, Camila Cendra, Jun Li, Brandon T. Rotondo, David J. Bilsky, Ryan Lewis, Rui Xiao, Alejandra N. Ayala Oviedo, Alice S. Fergerson, Zekun Chen, Dong Yu, A. Salleo","doi":"10.1117/12.2595890","DOIUrl":"https://doi.org/10.1117/12.2595890","url":null,"abstract":"The largest need in organic electronic devices is a universal method to produce micro- to nano-scale features for devices from semiconducting polymers cheaply, and at scale. We recently developed a solution method to optically pattern conjugated polymers with resolution that exceeds the linear Abbe diffraction limit. We examine the relationship between optical write intensity, write speed, and write wavelength on the resulting pattern fidelity. Finite element modeling reveals that nearly all patterning occurs as a result of local heating and superlinear resolution is a result of a highly non-linear dissolution rate for the polymer as a function of temperature. This result is general to any conjugated polymer. We used this new technique to fabricate P3HT/F4TCNQ nanowires We also demonstrate that a P3HT nanowires can be doped and de-doped from solution without changing the dimension of the wire.","PeriodicalId":19672,"journal":{"name":"Organic and Hybrid Light Emitting Materials and Devices XXV","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80515186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High temperature superfluorescence in hybrid perovskites","authors":"K. Gundogdu","doi":"10.1117/12.2594917","DOIUrl":"https://doi.org/10.1117/12.2594917","url":null,"abstract":"In this work we will discuss high temperature macroscopic quantum coherent effects, specifically superfluorescence in hybrid perovskites.","PeriodicalId":19672,"journal":{"name":"Organic and Hybrid Light Emitting Materials and Devices XXV","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73374632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low-bias quenching due to spontaneous orientation polarization and its impact on OLED efficiency","authors":"R. Holmes","doi":"10.1117/12.2595269","DOIUrl":"https://doi.org/10.1117/12.2595269","url":null,"abstract":"Much effort has been directed at understanding organic light-emitting device (OLED) efficiency and the role of bimolecular quenching in efficiency roll-off. Quenching is less widely discussed at low-bias, where populations are reduced. Here, we describe lock-in-based photoluminescence measurements on working phosphorescent OLEDs to demonstrate that this assumption is not generally valid, and that significant exciton-polaron quenching is present even prior to turn-on. Exciton-polaron quenching arises with holes accumulated due to spontaneous orientation polarization in the electron transport layer. This low-bias quenching is found to strongly determine maximum achievable efficiency, suggesting a need to refine materials selection and device design rules.","PeriodicalId":19672,"journal":{"name":"Organic and Hybrid Light Emitting Materials and Devices XXV","volume":"55 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74464334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}