{"title":"自发取向极化引起的低偏置猝灭及其对OLED效率的影响","authors":"R. Holmes","doi":"10.1117/12.2595269","DOIUrl":null,"url":null,"abstract":"Much effort has been directed at understanding organic light-emitting device (OLED) efficiency and the role of bimolecular quenching in efficiency roll-off. Quenching is less widely discussed at low-bias, where populations are reduced. Here, we describe lock-in-based photoluminescence measurements on working phosphorescent OLEDs to demonstrate that this assumption is not generally valid, and that significant exciton-polaron quenching is present even prior to turn-on. Exciton-polaron quenching arises with holes accumulated due to spontaneous orientation polarization in the electron transport layer. This low-bias quenching is found to strongly determine maximum achievable efficiency, suggesting a need to refine materials selection and device design rules.","PeriodicalId":19672,"journal":{"name":"Organic and Hybrid Light Emitting Materials and Devices XXV","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-bias quenching due to spontaneous orientation polarization and its impact on OLED efficiency\",\"authors\":\"R. Holmes\",\"doi\":\"10.1117/12.2595269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Much effort has been directed at understanding organic light-emitting device (OLED) efficiency and the role of bimolecular quenching in efficiency roll-off. Quenching is less widely discussed at low-bias, where populations are reduced. Here, we describe lock-in-based photoluminescence measurements on working phosphorescent OLEDs to demonstrate that this assumption is not generally valid, and that significant exciton-polaron quenching is present even prior to turn-on. Exciton-polaron quenching arises with holes accumulated due to spontaneous orientation polarization in the electron transport layer. This low-bias quenching is found to strongly determine maximum achievable efficiency, suggesting a need to refine materials selection and device design rules.\",\"PeriodicalId\":19672,\"journal\":{\"name\":\"Organic and Hybrid Light Emitting Materials and Devices XXV\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic and Hybrid Light Emitting Materials and Devices XXV\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2595269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic and Hybrid Light Emitting Materials and Devices XXV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2595269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-bias quenching due to spontaneous orientation polarization and its impact on OLED efficiency
Much effort has been directed at understanding organic light-emitting device (OLED) efficiency and the role of bimolecular quenching in efficiency roll-off. Quenching is less widely discussed at low-bias, where populations are reduced. Here, we describe lock-in-based photoluminescence measurements on working phosphorescent OLEDs to demonstrate that this assumption is not generally valid, and that significant exciton-polaron quenching is present even prior to turn-on. Exciton-polaron quenching arises with holes accumulated due to spontaneous orientation polarization in the electron transport layer. This low-bias quenching is found to strongly determine maximum achievable efficiency, suggesting a need to refine materials selection and device design rules.