Ocean Science最新文献

筛选
英文 中文
Observations and modeling of tidally generated high-frequency velocity fluctuations downstream of a channel constriction 河道收缩下游潮汐产生的高频速度波动观测与建模
IF 3.2 3区 地球科学
Ocean Science Pub Date : 2023-11-29 DOI: 10.5194/os-19-1633-2023
Håvard Espenes, P. Isachsen, O. Nøst
{"title":"Observations and modeling of tidally generated high-frequency velocity fluctuations downstream of a channel constriction","authors":"Håvard Espenes, P. Isachsen, O. Nøst","doi":"10.5194/os-19-1633-2023","DOIUrl":"https://doi.org/10.5194/os-19-1633-2023","url":null,"abstract":"Abstract. We investigate data from an acoustic Doppler current profiler deployed in a constricted ocean channel showing a tidally dominated flow with intermittent velocity extrema during outflow from the constriction but not during inflow. A 2D numerical ocean model forced by tides is used to examine the spatial flow structure and underlying dynamical processes. We find that flow-separation eddies generated near the tightest constriction point form a dipole pair which propagates downstream and drives the observed intermittent flow variability. The eddies, which are generated by an along-channel adverse pressure gradient, spin up for some time near the constriction until they develop local low pressures in their centers that are strong enough to modify the background along-channel pressure gradient significantly. When the dipole has propagated some distance away from the constriction, the conditions for flow separation are recovered, and new eddies are formed.","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"44 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139211030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relative dispersion and kinematic properties of the coastal submesoscale circulation in the southeastern Ligurian Sea 利古里亚海东南部沿岸次中尺度环流的相对散布和运动特性
IF 3.2 3区 地球科学
Ocean Science Pub Date : 2023-11-24 DOI: 10.5194/os-19-1617-2023
P. Poulain, L. Centurioni, C. Brandini, Stefano Taddei, M. Berta, M. Menna
{"title":"Relative dispersion and kinematic properties of the coastal submesoscale circulation in the southeastern Ligurian Sea","authors":"P. Poulain, L. Centurioni, C. Brandini, Stefano Taddei, M. Berta, M. Menna","doi":"10.5194/os-19-1617-2023","DOIUrl":"https://doi.org/10.5194/os-19-1617-2023","url":null,"abstract":"Abstract. An array of Lagrangian instruments (more than 100 drifters and a profiling float) were deployed for several days in the coastal waters of the southeastern Ligurian Sea to characterize the near-surface circulation at the submesoscale (< 10 km). The drifters were trapped in an offshore-flowing filament and a cyclonic eddy that developed at the southwestern extremity of the filament. Drifter velocities are used to estimate differential kinematic properties (DKPs) and the relative dispersion of the near-surface currents on scales as small as 100 m. The maximum drifter speed is ∼ 50 cm s−1. The DKPs within the cluster exhibit considerable spatial and temporal variability, with absolute values reaching the order of magnitude of the local inertial frequency. Vorticity prevails in the core of the cyclonic eddy, while strain is dominant at the outer edge of the eddy. Significant convergence was also found in the southwestern flow of the filament. The initial relative dispersion on small scales (100–200 m) is directly related to some of the DKPs (e.g., divergence, strain and instantaneous rate of separation). The mean squared separation distance (MSSD) grows exponentially with time, and the finite-size Lyapunov exponent (FSLE) is independent of scale. After 5–10 h of drift or for initial separations greater than 500 m, the MSSD and FSLE show smaller relative dispersion that decreases slightly with scale.","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"1 ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139241156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Southern Ocean warming and Antarctic ice shelf melting in conditions plausible by late 23rd century in a high-end scenario 南大洋变暖和南极冰架融化在 23 世纪晚期的高端设想方案中条件合理
IF 3.2 3区 地球科学
Ocean Science Pub Date : 2023-11-22 DOI: 10.5194/os-19-1595-2023
P. Mathiot, N. Jourdain
{"title":"Southern Ocean warming and Antarctic ice shelf melting in conditions plausible by late 23rd century in a high-end scenario","authors":"P. Mathiot, N. Jourdain","doi":"10.5194/os-19-1595-2023","DOIUrl":"https://doi.org/10.5194/os-19-1595-2023","url":null,"abstract":"Abstract. How much Antarctic ice shelf basal melt rates can increase in response to global warming remains an open question. Here we describe the response of the Southern Ocean and ice shelf cavities to an abrupt change to high-end atmospheric conditions plausible by the late 23rd century under the SSP5-8.5 scenario. To achieve this objective, we first present and evaluate a new 0.25∘ global configuration of the NEMO (Nucleus for European Modelling of the Ocean NEMO System Team, 2019) ocean and sea ice model. Our present-day simulations demonstrate good agreement with observational data for key variables such as temperature, salinity, and ice shelf melt rates, despite the remaining difficulties to simulate the interannual variability in the Amundsen Sea. The ocean response to the high-end atmospheric perturbation includes a strengthening and extension of the Ross and Weddell gyres and a quasi-disappearance of sea ice, with a subsequent decrease in production of High Salinity Shelf Water and increased intrusion of warmer water onto the continental shelves favoured by changes in baroclinic currents at the shelf break. We propose to classify the perturbed continental shelf as a “warm–fresh shelf”. This induces a substantial increase in ice shelf basal melt rates, particularly in the coldest seas, with a total basal mass loss rising from 1180 to 15 700 Gt yr−1 and an Antarctica averaged melt rate increasing from 0.8 to 10.6 m yr−1. In the perturbed simulation, most ice shelves around Antarctica experience conditions that are currently found in the Amundsen Sea, while the Amundsen Sea warms by 2 ∘C. These idealised projections can be used as a base to calibrate basal melt parameterisations used in long-term ice sheet projections.","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"24 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139248135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of surface and subsurface-intensified eddies on sea surface temperature and chlorophyll a in the northern Indian Ocean utilizing deep learning 利用深度学习研究表层和次表层强化漩涡对北印度洋海面温度和叶绿素 a 的影响
IF 3.2 3区 地球科学
Ocean Science Pub Date : 2023-11-16 DOI: 10.5194/os-19-1579-2023
Yingjie Liu, Xiaofen Li
{"title":"Impact of surface and subsurface-intensified eddies on sea surface temperature and chlorophyll a in the northern Indian Ocean utilizing deep learning","authors":"Yingjie Liu, Xiaofen Li","doi":"10.5194/os-19-1579-2023","DOIUrl":"https://doi.org/10.5194/os-19-1579-2023","url":null,"abstract":"Abstract. Mesoscale eddies, including surface-intensified eddies (SEs) and subsurface-intensified eddies (SSEs), significantly influence phytoplankton distribution in the ocean. Nevertheless, due to the sparse in situ data, understanding of the characteristics of SSEs and their influence on chlorophyll a (Chl a) concentration is still unclear. Consequently, the study utilized a deep learning model to extract SEs and SSEs in the northern Indian Ocean (NIO) from 2000 to 2015, using satellite-derived sea surface height (SSH) and sea surface temperature (SST) data. The analysis revealed that SSEs accounted for 39 % of the total eddies in the NIO, and their SST signatures exhibited opposite behaviour compared to SEs. Furthermore, by integrating ocean colour remote-sensing data, the study investigated the contrasting impacts of SEs and SSEs on Chl a concentration in two basins of the NIO, the Arabian Sea (AS) and the Bay of Bengal (BoB), known for their disparate biological productivity. In the AS, SEs induced Chl a anomalies that were 2 to 3 times higher than those caused by SSEs. Notably, there were no significant differences in Chl a anomalies induced by the same type of eddies between summer and winter. In contrast, the BoB exhibited distinct seasonal variations, where SEs induced slightly higher Chl a anomalies than SSEs during the summer, while substantial differences were observed during the winter. Specifically, subsurface-intensified anticyclonic eddies (SSAEs) led to positive Chl a anomalies, contrasting the negative anomalies induced by surface-intensified anticyclonic eddies (SAEs) with comparable magnitudes. Moreover, while both subsurface-intensified cyclonic eddies (SSCEs) and surface-intensified cyclonic eddies (SCEs) resulted in positive Chl a anomalies during winter in the BoB, the magnitude of SSCEs was only one-third of that induced by SCEs. Besides, subsurface Chl a induced by SSAEs (SSCEs) is ∼0.1 mg m−3 greater (less) than that caused by SAEs (SCEs) in the upper 30 (50) m using Biogeochemical Argo profiles. The distinct Chl a between SEs and SSEs can be attributed to their contrasting subsurface structures revealed by Argo profiles. Compared to SAEs (SCEs), SSAEs (SSCEs) enhance (decrease) production via the convex (concave) of the isopycnals that occur around the mixed layer. The study provides a valuable approach to investigating subsurface eddies and contributes to a comprehensive understanding of their influence on chlorophyll concentration.","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"30 4","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139267584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Short-term prediction of the significant wave height and average wave period based on the variational mode decomposition–temporal convolutional network–long short-term memory (VMD–TCN–LSTM) algorithm 基于变分模分解-时间卷积网络-长短时记忆(VMD-TCN-LSTM)算法的有效波高和平均波周期短期预测
3区 地球科学
Ocean Science Pub Date : 2023-11-09 DOI: 10.5194/os-19-1561-2023
Qiyan Ji, Lei Han, Lifang Jiang, Yuting Zhang, Minghong Xie, Yu Liu
{"title":"Short-term prediction of the significant wave height and average wave period based on the variational mode decomposition–temporal convolutional network–long short-term memory (VMD–TCN–LSTM) algorithm","authors":"Qiyan Ji, Lei Han, Lifang Jiang, Yuting Zhang, Minghong Xie, Yu Liu","doi":"10.5194/os-19-1561-2023","DOIUrl":"https://doi.org/10.5194/os-19-1561-2023","url":null,"abstract":"Abstract. The present work proposes a prediction model of significant wave height (SWH) and average wave period (APD) based on variational mode decomposition (VMD), temporal convolutional networks (TCNs), and long short-term memory (LSTM) networks. The wave sequence features were obtained using VMD technology based on the wave data from the National Data Buoy Center. Then the SWH and APD prediction models were established using TCNs, LSTM, and Bayesian hyperparameter optimization. The VMD–TCN–LSTM model was compared with the VMD–LSTM (without TCN cells) and LSTM (without VMD and TCN cells) models. The VMD–TCN–LSTM model has significant superiority and shows robustness and generality in different buoy prediction experiments. In the 3 h wave forecasts, VMD primarily improved the model performance, while the TCN had less of an influence. In the 12, 24, and 48 h wave forecasts, both VMD and TCNs improved the model performance. The contribution of the TCN to the improvement of the prediction result determination coefficient gradually increased as the forecasting length increased. In the 48 h SWH forecasts, the VMD and TCN improved the determination coefficient by 132.5 % and 36.8 %, respectively. In the 48 h APD forecasts, the VMD and TCN improved the determination coefficient by 119.7 % and 40.9 %, respectively.","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":" 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135241368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical analysis of dynamic behavior of continental shelf wave motions in the northern South China Sea 南海北部大陆架波浪运动动力特性的统计分析
3区 地球科学
Ocean Science Pub Date : 2023-11-09 DOI: 10.5194/os-19-1545-2023
Junyi Li, Tao He, Quanan Zheng, Ying Xu, Lingling Xie
{"title":"Statistical analysis of dynamic behavior of continental shelf wave motions in the northern South China Sea","authors":"Junyi Li, Tao He, Quanan Zheng, Ying Xu, Lingling Xie","doi":"10.5194/os-19-1545-2023","DOIUrl":"https://doi.org/10.5194/os-19-1545-2023","url":null,"abstract":"Abstract. This study aims to analyze statistical behavior of the continental shelf wave motions, including continental shelf waves (CSWs) and arrested topographic waves (ATWs), in the northern South China Sea. The baseline consists of tide-gauge data from stations Kanmen, Xiamen, Shanwei, and Zhapo as well as along-track sea level anomaly (SLA) data derived from multiple satellite altimeters from 1993 to 2020. The subtidal signals propagating along the coast with periods shorter than 40 d and phase speeds of about 10 m s−1 are interpreted as CSWs. The cross-shelf structure of along-track SLAs indicates that Mode 1 of CSWs is the predominant component trapped in the area shallower than about 200 m. The amplitudes of CSWs reach a maximum of 0.6 m during July–September and a minimum of 0.2 m during April–June. The inter-seasonal and seasonal signals represent ATWs. The amplitudes of ATWs reach 0.10 m during October–December, twice that during July–September. These observations can be well interpreted in the framework of linear wave theory. The cross-shelf structures of CSWs and ATWs derived from along-track SLAs illustrate that the methods are suitable for observing dynamic behavior of the CSWs.","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":" 34","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135243923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the drivers of regime shifts in the Antarctic marginal seas, exemplified by the Weddell Sea 以威德尔海为例,探讨南极边缘海状态变化的驱动因素
3区 地球科学
Ocean Science Pub Date : 2023-11-07 DOI: 10.5194/os-19-1529-2023
Verena Haid, Ralph Timmermann, Özgür Gürses, Hartmut H. Hellmer
{"title":"On the drivers of regime shifts in the Antarctic marginal seas, exemplified by the Weddell Sea","authors":"Verena Haid, Ralph Timmermann, Özgür Gürses, Hartmut H. Hellmer","doi":"10.5194/os-19-1529-2023","DOIUrl":"https://doi.org/10.5194/os-19-1529-2023","url":null,"abstract":"Abstract. Recent studies have found evidence for a potential future tipping point, when the density of Antarctic continental shelf waters, specifically in the southern Weddell Sea, will allow for the onshore flow of warm waters of open ocean origin. A cold-to-warm regime shift in the adjacent ice shelf cavities entails a strong enhancement of ice shelf basal melt rates and could trigger instabilities in the ice sheet. From a suite of numerical experiments, aimed to force such a regime shift on the continental shelf, we identified the density balance between the shelf waters formed by sea ice production and the warmer water at the shelf break as the defining element of a tipping into a warm state. In our experiments, this process is reversible but there is evidence for hysteresis behaviour. Using HadCM3 20th-century output as atmospheric forcing, the resulting state of the Filchner–Ronne cavity depends on the initial state. In contrast, ERA Interim forcing pushes even a warm-initialized cavity into a cold state, i.e. it pushes the system back across the reversal threshold to the cold side. However, it turns out that for forcing data perturbations of a realistic magnitude, a unique and universal recipe for triggering a regime shift in Antarctic marginal seas was not found; instead, various ocean states can lead to an intrusion of off-shelf waters onto the continental shelf and into the cavities. Whether or not any given forcing or perturbation yields a density imbalance and thus allows for the inflow of warm water depends on the complex interplay between bottom topography, mean ocean state, sea ice processes, and atmospheric conditions.","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"107 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135539372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Regional mapping of energetic short mesoscale ocean dynamics from altimetry: performances from real observations 高度计的高能短中尺度海洋动力学区域制图:来自实际观测的表现
3区 地球科学
Ocean Science Pub Date : 2023-10-26 DOI: 10.5194/os-19-1517-2023
Florian Le Guillou, Lucile Gaultier, Maxime Ballarotta, Sammy Metref, Clément Ubelmann, Emmanuel Cosme, Marie-Helène Rio
{"title":"Regional mapping of energetic short mesoscale ocean dynamics from altimetry: performances from real observations","authors":"Florian Le Guillou, Lucile Gaultier, Maxime Ballarotta, Sammy Metref, Clément Ubelmann, Emmanuel Cosme, Marie-Helène Rio","doi":"10.5194/os-19-1517-2023","DOIUrl":"https://doi.org/10.5194/os-19-1517-2023","url":null,"abstract":"Abstract. For over 25 years, satellite altimetry has provided invaluable information about the ocean dynamics at many scales. In particular, gridded sea surface height (SSH) maps allow us to estimate the mesoscale geostrophic circulation in the ocean. However, conventional interpolation techniques rely on static optimal interpolation schemes, hence limiting the estimation of non-linear dynamics at scales not well sampled by altimetry (i.e., below 150–200 km at mid-latitudes). To overcome this limitation in the resolution of small-scale SSH structures (and thus small-scale geostrophic currents), a back-and-forth nudging algorithm combined with a quasi-geostrophic model, a technique called BFN-QG, has been successfully applied on simulated SSH data in observing system simulation experiments (OSSEs). The result is a significant reduction in interpolation error and an improvement in the space–time resolutions of the experimental gridded product compared to those of operational products. In this study, we propose that the BFN-QG be applied to real altimetric SSH data in a highly turbulent region spanning a part of the Agulhas Current. The performances are evaluated within observing system experiments (OSEs) that use independent data (such as independent SSH, sea surface temperature and drifter data) as ground truth. By comparing the mapping performances to the ones obtained with operational products, we show that the BFN-QG improves the mapping of short, energetic mesoscale structures and associated geostrophic currents both in space and time. In particular, the BFN-QG improves (i) the spatial effective resolution of the SSH maps by a factor of 20 %, (ii) the zonal and (especially) the meridional geostrophic currents, and (iii) the prediction of Lagrangian transport for lead times up to 10 d. Unlike the results obtained in the OSSEs, the OSEs reveal more contrasting performances in low-variability regions, which are discussed in the paper.","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"64 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134908102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Mediterranean Forecasting System – Part 1: Evolution and performance 地中海预报系统-第1部分:演变和性能
3区 地球科学
Ocean Science Pub Date : 2023-10-25 DOI: 10.5194/os-19-1483-2023
Giovanni Coppini, Emanuela Clementi, Gianpiero Cossarini, Stefano Salon, Gerasimos Korres, Michalis Ravdas, Rita Lecci, Jenny Pistoia, Anna Chiara Goglio, Massimiliano Drudi, Alessandro Grandi, Ali Aydogdu, Romain Escudier, Andrea Cipollone, Vladyslav Lyubartsev, Antonio Mariani, Sergio Cretì, Francesco Palermo, Matteo Scuro, Simona Masina, Nadia Pinardi, Antonio Navarra, Damiano Delrosso, Anna Teruzzi, Valeria Di Biagio, Giorgio Bolzon, Laura Feudale, Gianluca Coidessa, Carolina Amadio, Alberto Brosich, Arnau Miró, Eva Alvarez, Paolo Lazzari, Cosimo Solidoro, Charikleia Oikonomou, Anna Zacharioudaki
{"title":"The Mediterranean Forecasting System – Part 1: Evolution and performance","authors":"Giovanni Coppini, Emanuela Clementi, Gianpiero Cossarini, Stefano Salon, Gerasimos Korres, Michalis Ravdas, Rita Lecci, Jenny Pistoia, Anna Chiara Goglio, Massimiliano Drudi, Alessandro Grandi, Ali Aydogdu, Romain Escudier, Andrea Cipollone, Vladyslav Lyubartsev, Antonio Mariani, Sergio Cretì, Francesco Palermo, Matteo Scuro, Simona Masina, Nadia Pinardi, Antonio Navarra, Damiano Delrosso, Anna Teruzzi, Valeria Di Biagio, Giorgio Bolzon, Laura Feudale, Gianluca Coidessa, Carolina Amadio, Alberto Brosich, Arnau Miró, Eva Alvarez, Paolo Lazzari, Cosimo Solidoro, Charikleia Oikonomou, Anna Zacharioudaki","doi":"10.5194/os-19-1483-2023","DOIUrl":"https://doi.org/10.5194/os-19-1483-2023","url":null,"abstract":"Abstract. The Mediterranean Forecasting System produces operational analyses and reanalyses and 10 d forecasts for many essential ocean variables (EOVs), from currents, temperature, salinity, and sea level to wind waves and pelagic biogeochemistry. The products are available at a horizontal resolution of 1/24∘ (approximately 4 km) and with 141 unevenly spaced vertical levels. The core of the Mediterranean Forecasting System is constituted by the physical (PHY), the biogeochemical (BIO), and the wave (WAV) components, consisting of both numerical models and data assimilation modules. The three components together constitute the so-called Mediterranean Monitoring and Forecasting Center (Med-MFC) of the Copernicus Marine Service. Daily 10 d forecasts and analyses are produced by the PHY, BIO, and WAV operational systems, while reanalyses are produced every ∼ 3 years for the past 30 years and are extended (yearly). The modelling systems, their coupling strategy, and their evolutions are illustrated in detail. For the first time, the quality of the products is documented in terms of skill metrics evaluated over a common 3-year period (2018–2020), giving the first complete assessment of uncertainties for all the Mediterranean environmental variable analyses.","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"90 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135170217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stirring across the Antarctic Circumpolar Current's southern boundary at the prime meridian, Weddell Sea 在本初子午线威德尔海搅动着穿过南极绕极流的南部边界
3区 地球科学
Ocean Science Pub Date : 2023-10-18 DOI: 10.5194/os-19-1465-2023
Ria Oelerich, Karen J. Heywood, Gillian M. Damerell, Marcel du Plessis, Louise C. Biddle, Sebastiaan Swart
{"title":"Stirring across the Antarctic Circumpolar Current's southern boundary at the prime meridian, Weddell Sea","authors":"Ria Oelerich, Karen J. Heywood, Gillian M. Damerell, Marcel du Plessis, Louise C. Biddle, Sebastiaan Swart","doi":"10.5194/os-19-1465-2023","DOIUrl":"https://doi.org/10.5194/os-19-1465-2023","url":null,"abstract":"Abstract. At the southern boundary of the Antarctic Circumpolar Current (ACC), relatively warm ACC waters encounter the colder waters surrounding Antarctica. Strong density gradients across the southern boundary indicate the presence of a frontal jet and are thought to modulate the southward heat transport across the front. In this study, the southern boundary in the Weddell Sea sector at the prime meridian is surveyed for the first time in high resolution over 2 months during an austral summer with underwater gliders occupying a transect across the front on five occasions. The five transects show that the frontal structure (i.e. hydrography, velocities and lateral density gradients) varies temporally. The results demonstrate significant, transient (a few weeks) variability of the southern boundary and its frontal jet in location, strength and width. A mesoscale cold-core eddy is identified to disrupt the southern boundary’s frontal structure and strengthen lateral density gradients across the front. The front's barrier properties are assessed using mixing length scales and potential vorticity to establish the cross-frontal exchange of properties between the ACC and the Weddell Gyre. The results show that stronger lateral density gradients caused by the mesoscale eddy strengthen the barrier-like properties of the front through reduced mixing length scales and pronounced gradients of potential vorticity. In contrast, the barrier-like properties of the southern boundary are reduced when no mesoscale eddy is influencing the density gradients across the front. Using satellite altimetry, we further demonstrate that the barrier properties over the past decade have strengthened as a result of increased meridional gradients of absolute dynamic topography and increased frontal jet speeds in comparison to previous decades. Our results emphasise that locally and rapidly changing barrier properties of the southern boundary are important to quantify the cross-frontal exchange, which is particularly relevant in regions where the southern boundary is located near the Antarctic shelf break (e.g. in the West Antarctic sector).","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"16 9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135883601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信