OncotargetPub Date : 2024-10-01DOI: 10.18632/oncotarget.28652
Talha Badar, Moazzam Shahzad, Ehab Atallah, Mark R Litzow, Mohamed A Kharfan-Dabaja
{"title":"Transplant or no transplant for <i>TP53</i> mutated AML.","authors":"Talha Badar, Moazzam Shahzad, Ehab Atallah, Mark R Litzow, Mohamed A Kharfan-Dabaja","doi":"10.18632/oncotarget.28652","DOIUrl":"10.18632/oncotarget.28652","url":null,"abstract":"","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"674-676"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444334/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OncotargetPub Date : 2024-10-01DOI: 10.18632/oncotarget.28657
Simone Buraschi, Shi-Qiong Xu, Manuela Stefanello, Igor Moskalev, Alaide Morcavallo, Marco Genua, Ryuta Tanimoto, Ruth Birbe, Stephen C Peiper, Leonard G Gomella, Antonino Belfiore, Peter C Black, Renato V Iozzo, Andrea Morrione
{"title":"Correction: Suppression of progranulin expression inhibits bladder cancer growth and sensitizes cancer cells to cisplatin.","authors":"Simone Buraschi, Shi-Qiong Xu, Manuela Stefanello, Igor Moskalev, Alaide Morcavallo, Marco Genua, Ryuta Tanimoto, Ruth Birbe, Stephen C Peiper, Leonard G Gomella, Antonino Belfiore, Peter C Black, Renato V Iozzo, Andrea Morrione","doi":"10.18632/oncotarget.28657","DOIUrl":"10.18632/oncotarget.28657","url":null,"abstract":"","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"697-698"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OncotargetPub Date : 2024-10-01DOI: 10.18632/oncotarget.28651
Madison Rackear, Elias Quijano, Zaira Ianniello, Daniel A Colón-Ríos, Adam Krysztofiak, Rashed Abdullah, Yanfeng Liu, Faye A Rogers, Dale L Ludwig, Rohini Dwivedi, Franziska Bleichert, Peter M Glazer
{"title":"Next-generation cell-penetrating antibodies for tumor targeting and RAD51 inhibition.","authors":"Madison Rackear, Elias Quijano, Zaira Ianniello, Daniel A Colón-Ríos, Adam Krysztofiak, Rashed Abdullah, Yanfeng Liu, Faye A Rogers, Dale L Ludwig, Rohini Dwivedi, Franziska Bleichert, Peter M Glazer","doi":"10.18632/oncotarget.28651","DOIUrl":"10.18632/oncotarget.28651","url":null,"abstract":"<p><p>Monoclonal antibody therapies for cancer have demonstrated extraordinary clinical success in recent years. However, these strategies are thus far mostly limited to specific cell surface antigens, even though many disease targets are found intracellularly. Here we report studies on the humanization of a full-length, nucleic acid binding, monoclonal lupus-derived autoantibody, 3E10, which exhibits a novel mechanism of cell penetration and tumor specific targeting. Comparing humanized variants of 3E10, we demonstrate that cell uptake depends on the nucleoside transporter ENT2, and that faster cell uptake and superior <i>in vivo</i> tumor targeting are associated with higher affinity nucleic acid binding. We show that one human variant retains the ability of the parental 3E10 to bind RAD51, serving as a synthetically lethal inhibitor of homology-directed repair <i>in vitro</i>. These results provide the basis for the rational design of a novel antibody platform for therapeutic tumor targeting with high specificity following systemic administration.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"699-713"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444335/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OncotargetPub Date : 2024-10-01DOI: 10.18632/oncotarget.28653
Jennifer A Heritz, Sarah J Backe, Mehdi Mollapour
{"title":"Molecular chaperones: Guardians of tumor suppressor stability and function.","authors":"Jennifer A Heritz, Sarah J Backe, Mehdi Mollapour","doi":"10.18632/oncotarget.28653","DOIUrl":"10.18632/oncotarget.28653","url":null,"abstract":"<p><p>The term 'tumor suppressor' describes a widely diverse set of genes that are generally involved in the suppression of metastasis, but lead to tumorigenesis upon loss-of-function mutations. Despite the protein products of tumor suppressors exhibiting drastically different structures and functions, many share a common regulatory mechanism-they are molecular chaperone 'clients'. Clients of molecular chaperones depend on an intracellular network of chaperones and co-chaperones to maintain stability. Mutations of tumor suppressors that disrupt proper chaperoning prevent the cell from maintaining sufficient protein levels for physiological function. This review discusses the role of the molecular chaperones Hsp70 and Hsp90 in maintaining the stability and functional integrity of tumor suppressors. The contribution of cochaperones prefoldin, HOP, Aha1, p23, FNIP1/2 and Tsc1 as well as the chaperonin TRiC to tumor suppressor stability is also discussed. Genes implicated in renal cell carcinoma development-<i>VHL</i>, <i>TSC1/2</i>, and <i>FLCN</i>-will be used as examples to explore this concept, as well as how pathogenic mutations of tumor suppressors cause disease by disrupting protein chaperoning, maturation, and function.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"679-696"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444336/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OncotargetPub Date : 2024-09-30DOI: 10.18632/oncotarget.28647
Mateus Gonçalves de Sena Barbosa, Beatriz Rodrigues Messias, Rafael Trindade Tatit, Maycon Cristian Gomes de Paula, Valdecir Boeno Spenazato Júnior, Maria Gabriella Borges Braga, Caio Vinícius Marcolino Santos, Luiza D'Ottaviano Cobos, Vinícius Otávio da Silva, Eberval Gadelha Figueiredo, Nicollas Nunes Rabelo, Bipin Chaurasia
{"title":"Zika virus and brain cancer: Can Zika be an effective treatment for brain cancer? A systematic review.","authors":"Mateus Gonçalves de Sena Barbosa, Beatriz Rodrigues Messias, Rafael Trindade Tatit, Maycon Cristian Gomes de Paula, Valdecir Boeno Spenazato Júnior, Maria Gabriella Borges Braga, Caio Vinícius Marcolino Santos, Luiza D'Ottaviano Cobos, Vinícius Otávio da Silva, Eberval Gadelha Figueiredo, Nicollas Nunes Rabelo, Bipin Chaurasia","doi":"10.18632/oncotarget.28647","DOIUrl":"10.18632/oncotarget.28647","url":null,"abstract":"<p><strong>Introduction: </strong>Many studies have highlighted the use of oncolytic viruses as a new class of therapeutic agents for central nervous system (CNS) tumors, especially glioblastomas (GMB). Zika Virus (ZIKV) proteins targeted to specific stem cells have been studied <i>in vitro</i> and animal models with promising results.</p><p><strong>Materials and methods: </strong>A systematic review was evaluated the efficacy and safety of the ZIKV use for CNS tumors treatment. Data were extracted and the <i>in vivo</i> studies were evaluated using the Robins-I tool. We assessed bias in each study using criteria such as selection bias, performance bias, detection bias, attrition bias, reporting bias, and others. According to Cochrane guidelines, bias was classified as high, low, or uncertain. High bias occurred when studies did not meet the criteria. Low bias was assigned when criteria were clearly met. Uncertain bias reflected insufficient information for a clear classification.</p><p><strong>Results: </strong>The 14 included studies shown that ZIKV reduced cell viability or inhibited the growth, proliferation of glioma stem cells (GSCs), and Bcl2 expression - which could potentially enhance the effect of chemotherapy/radiotherapy; caused cytopathic effects, induced tumor cell damage, manifested oncolytic properties, and even selectively safely killed GSCs; ultimately, it led to significant tumor remission and enhanced long-term survival through enhanced T-cell response.</p><p><strong>Conclusions: </strong>Although current evidence suggests ZIKV as a promising treatment for CNS tumors and may improve survival when combined with surgery and radiotherapy. Despite limited human evidence, it shows potential benefits. Further research is needed to confirm safety, efficacy, and optimize treatment in humans.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"662-673"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441410/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OncotargetPub Date : 2024-09-30DOI: 10.18632/oncotarget.28646
Maki Sakuma, Torsten Haferlach, Wencke Walter
{"title":"<i>UBA1</i> dysfunction in VEXAS and cancer.","authors":"Maki Sakuma, Torsten Haferlach, Wencke Walter","doi":"10.18632/oncotarget.28646","DOIUrl":"10.18632/oncotarget.28646","url":null,"abstract":"<p><p><i>UBA1</i>, an X-linked gene, encodes one of the only two ubiquitin E1 enzymes, playing a pivotal role in initiating one of the most essential post-translational modifications. In late 2020, partial loss-of-function mutations in <i>UBA1</i> within hematopoietic stem and progenitor cells were found to be responsible for VEXAS Syndrome, a previously unidentified hematoinflammatory disorder predominantly affecting older males. The condition is characterized by severe inflammation, cytopenias, and an association to hematologic malignancies. In this research perspective, we comprehensively review the molecular significance of <i>UBA1</i> loss of function as well as advancements in VEXAS research over the past four years for each of the VEXAS manifestations - inflammation, cytopenias, clonality, and possible oncogenicity. Special attention is given to contrasting the M41 and non-M41 mutations, aiming to elucidate their differential effects and to identify targetable mechanisms responsible for each of the symptoms. Finally, we explore the therapeutic landscape for VEXAS Syndrome, discussing the efficacy and potential of clone-targeting drugs based on the pathobiology of VEXAS. This includes azacitidine, currently approved for myelodysplastic neoplasms (MDS), novel UBA1 inhibitors being developed for a broad spectrum of cancers, Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK) inhibitors, and auranofin, a long-established drug for rheumatoid arthritis. This perspective bridges basic research to clinical symptoms and therapeutics.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"644-658"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441413/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OncotargetPub Date : 2024-09-30DOI: 10.18632/oncotarget.28650
Joshua J Lingo, Ellen Voigt, Dawn E Quelle
{"title":"Linking FOXM1 and PD-L1 to CDK4/6-MEK targeted therapy resistance in malignant peripheral nerve sheath tumors.","authors":"Joshua J Lingo, Ellen Voigt, Dawn E Quelle","doi":"10.18632/oncotarget.28650","DOIUrl":"10.18632/oncotarget.28650","url":null,"abstract":"<p><p>Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, Ras-driven sarcomas characterized by loss of the <i>NF1</i> tumor suppressor gene and hyperactivation of MEK and CDK4/6 kinases. MPNSTs lack effective therapies. We recently demonstrated remarkable efficacy of dual CDK4/6-MEK inhibition in mice with <i>de novo</i> MPNSTs, which was heightened by combined targeting of the immune checkpoint protein, PD-L1. The triple combination therapy targeting CDK4/6, MEK, and PD-L1 led to extended MPNST regression and improved survival, although most tumors eventually acquired drug resistance. Here, we consider the immune activation phenotype caused by CDK4/6-MEK inhibition in MPNSTs that uniquely involved intratumoral plasma cell accumulation. We discuss how PD-L1 and FOXM1, a tumor-promoting transcription factor, are functionally linked and may be key mediators of resistance to CDK4/6-MEK targeted therapies. Finally, the role of FOXM1 in suppressing anti-tumor immunity and potentially thwarting immune-based therapies is considered. We suggest that future therapeutic strategies targeting the oncogenic network of CDK4/6, MEK, PD-L1, and FOXM1 represent exciting future treatment options for MPNST patients.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"638-643"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441412/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retraction: Association study of inflammatory cytokine and chemokine expression in hand foot and mouth disease.","authors":"Wenzhong Shang, Suying Qian, Lijuan Fang, Yong Han, Cuiping Zheng","doi":"10.18632/oncotarget.28655","DOIUrl":"10.18632/oncotarget.28655","url":null,"abstract":"","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"659"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441409/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OncotargetPub Date : 2024-09-30DOI: 10.18632/oncotarget.28648
Rashid K Sayyid, Neil E Fleshner
{"title":"Lessons from the ACDC-RP trial: Clinical trial design for radical prostatectomy neoadjuvant therapy trials.","authors":"Rashid K Sayyid, Neil E Fleshner","doi":"10.18632/oncotarget.28648","DOIUrl":"10.18632/oncotarget.28648","url":null,"abstract":"","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"660-661"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}