PRDX1 protects ATM from arsenite-induced proteotoxicity and maintains its stability during DNA damage signaling.

Q2 Medicine
Reem Ali, Mashael Algethami, Amera Sheha, Shatha Alqahtani, Ahmad Altayyar, Ayat Lashen, Emad Rakha, Abdallah Alhaj Sulaiman, Srinivasan Madhusudan, Dindial Ramotar
{"title":"PRDX1 protects ATM from arsenite-induced proteotoxicity and maintains its stability during DNA damage signaling.","authors":"Reem Ali, Mashael Algethami, Amera Sheha, Shatha Alqahtani, Ahmad Altayyar, Ayat Lashen, Emad Rakha, Abdallah Alhaj Sulaiman, Srinivasan Madhusudan, Dindial Ramotar","doi":"10.18632/oncotarget.28720","DOIUrl":null,"url":null,"abstract":"<p><p>Redox regulation and DNA repair coordination are essential for genomic stability. Peroxiredoxin 1 (PRDX1) is a thiol-dependent peroxidase and a chaperone that protects proteins from excessive oxidation. ATM kinase (Ataxia-Telangiectasia Mutated) and the MRN (MRE11-RAD50-NBS1) complex are DNA damage signaling and repair proteins. We previously showed that cells lacking PRDX1 are sensitive to arsenite, a toxic metal that induces DNA single- and double-strand breaks (DSBs). Herein, we showed that PRDX1 interacts with ATM. PRDX1-deleted cells have reduced ATM, MRE11, and RAD50 protein levels, but not NBS1. In control cells treated with arsenite, we observed γH2AX foci formation due to arsenite-induced DSBs, and not from PRDX1-deleted cells. Arsenite caused profound depletion of ATM in PRDX1-deleted cells, suggesting that PRDX1 protects and stabilizes ATM required to form γH2AX foci. Importantly, arsenite pretreatment of PRDX1-deleted cells caused hypersensitivity to chemotherapeutic agents that generate DSBs. Analysis of a clinical cohort of ovarian cancers treated with platinum chemotherapy revealed that tumours with high PRDX1/high ATM or high PRDX1/high MRE11 expression manifested aggressive phenotypes and poor patient survival. The data suggest that PRDX1 can predict responses to chemotherapy, and targeting PRDX1 could be a viable strategy to improve the efficacy of platinum chemotherapy.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"16 ","pages":"362-378"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12088036/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncotarget","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncotarget.28720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Redox regulation and DNA repair coordination are essential for genomic stability. Peroxiredoxin 1 (PRDX1) is a thiol-dependent peroxidase and a chaperone that protects proteins from excessive oxidation. ATM kinase (Ataxia-Telangiectasia Mutated) and the MRN (MRE11-RAD50-NBS1) complex are DNA damage signaling and repair proteins. We previously showed that cells lacking PRDX1 are sensitive to arsenite, a toxic metal that induces DNA single- and double-strand breaks (DSBs). Herein, we showed that PRDX1 interacts with ATM. PRDX1-deleted cells have reduced ATM, MRE11, and RAD50 protein levels, but not NBS1. In control cells treated with arsenite, we observed γH2AX foci formation due to arsenite-induced DSBs, and not from PRDX1-deleted cells. Arsenite caused profound depletion of ATM in PRDX1-deleted cells, suggesting that PRDX1 protects and stabilizes ATM required to form γH2AX foci. Importantly, arsenite pretreatment of PRDX1-deleted cells caused hypersensitivity to chemotherapeutic agents that generate DSBs. Analysis of a clinical cohort of ovarian cancers treated with platinum chemotherapy revealed that tumours with high PRDX1/high ATM or high PRDX1/high MRE11 expression manifested aggressive phenotypes and poor patient survival. The data suggest that PRDX1 can predict responses to chemotherapy, and targeting PRDX1 could be a viable strategy to improve the efficacy of platinum chemotherapy.

PRDX1保护ATM免受亚砷酸盐诱导的蛋白质毒性,并在DNA损伤信号传导过程中维持其稳定性。
氧化还原调控和DNA修复协调对基因组稳定至关重要。过氧还蛋白1 (PRDX1)是一种硫醇依赖性过氧化物酶和伴侣,保护蛋白质免受过度氧化。ATM激酶(ataxia -毛细血管扩张突变)和MRN (MRE11-RAD50-NBS1)复合物是DNA损伤信号和修复蛋白。我们之前的研究表明,缺乏PRDX1的细胞对亚砷酸盐敏感,亚砷酸盐是一种诱导DNA单链和双链断裂(dsb)的有毒金属。在这里,我们发现PRDX1与ATM相互作用。prdx1缺失细胞的ATM、MRE11和RAD50蛋白水平降低,但NBS1蛋白水平没有降低。在亚砷酸盐处理的对照细胞中,我们观察到γ - h2ax灶的形成是由亚砷酸盐诱导的dsb引起的,而不是来自prdx1缺失的细胞。亚砷酸盐导致PRDX1缺失的细胞中ATM的深度耗竭,表明PRDX1保护和稳定了形成γ - h2ax灶所需的ATM。重要的是,亚砷酸盐预处理prdx1缺失的细胞导致对产生dsb的化疗药物过敏。一项铂类化疗治疗的卵巢癌临床队列分析显示,PRDX1/ ATM高表达或PRDX1/ MRE11高表达的肿瘤表现出侵袭性表型,患者生存率较差。这些数据表明,PRDX1可以预测化疗反应,靶向PRDX1可能是提高铂化疗疗效的可行策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oncotarget
Oncotarget Oncogenes-CELL BIOLOGY
CiteScore
6.60
自引率
0.00%
发文量
129
审稿时长
1.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信