Nucleic acid therapeutics最新文献

筛选
英文 中文
Safety and Tolerability of GalNAc3-Conjugated Antisense Drugs Compared to the Same-Sequence 2'-O-Methoxyethyl-Modified Antisense Drugs: Results from an Integrated Assessment of Phase 1 Clinical Trial Data. GalNAc3共轭反义药物与同序列2'-O-甲氧基乙基修饰反义药物相比的安全性和耐受性:1期临床试验数据的综合评估结果。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2024-02-01 Epub Date: 2024-01-16 DOI: 10.1089/nat.2023.0026
Brenda F Baker, Shuting Xia, Wesley Partridge, Jeffery A Engelhardt, Sotirios Tsimikas, Stanley T Crooke, Sanjay Bhanot, Richard S Geary
{"title":"Safety and Tolerability of GalNAc<sub>3</sub>-Conjugated Antisense Drugs Compared to the Same-Sequence 2'-<i>O</i>-Methoxyethyl-Modified Antisense Drugs: Results from an Integrated Assessment of Phase 1 Clinical Trial Data.","authors":"Brenda F Baker, Shuting Xia, Wesley Partridge, Jeffery A Engelhardt, Sotirios Tsimikas, Stanley T Crooke, Sanjay Bhanot, Richard S Geary","doi":"10.1089/nat.2023.0026","DOIUrl":"10.1089/nat.2023.0026","url":null,"abstract":"<p><p>The triantennary <i>N</i>-acetylgalactosamine (GalNAc<sub>3</sub>) cluster has demonstrated the utility of receptor-mediated uptake of ligand-conjugated antisense drugs targeting RNA expressed by hepatocytes. GalNAc<sub>3</sub>-conjugated 2'-<i>O</i>-methoxyethyl (2'MOE) modified antisense oligonucleotides (ASOs) have demonstrated a higher potency than the unconjugated form to support lower doses for an equivalent pharmacological effect. We utilized the Ionis integrated safety database to compare four GalNAc<sub>3</sub>-conjugated and four same-sequence unconjugated 2'MOE ASOs. This assessment evaluated data from eight randomized placebo-controlled dose-ranging phase 1 studies involving 195 healthy volunteers (79 GalNAc<sub>3</sub> ASO, 24 placebo; 71 ASO, 21 placebo). No safety signals were identified by the incidence of abnormal threshold values in clinical laboratory tests for either ASO group. However, there was a significant increase in mean alanine transaminase levels compared with placebo in the upper dose range of the unconjugated 2'MOE ASO group. The mean percentage of subcutaneous injections leading to local cutaneous reaction was 30-fold lower in the GalNAc<sub>3</sub>-conjugated ASO group compared with the unconjugated ASO group (0.9% vs. 28.6%), with no incidence of flu-like reactions (0.0% vs. 0.7%). Three subjects (4.2%) in the unconjugated ASO group discontinued dosing. An improvement in the overall safety and tolerability profile of GalNAc<sub>3</sub>-conjugated 2'MOE ASOs is evident in this comparison of short-term clinical data in healthy volunteers.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"18-25"},"PeriodicalIF":4.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139479072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reversible Aptamer Staining, Sorting, and Cleaning of Cells (Clean FACS) with Antidote Oligonucleotide or Nuclease Yields Fully Responsive Cells. 用解毒寡核苷酸或核酸酶对细胞进行可逆性色素染色、分选和清洁(清洁荧光激活细胞分选),产生完全响应的细胞。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2024-02-01 Epub Date: 2024-01-30 DOI: 10.1089/nat.2023.0050
Martin D Requena, Amy Yan, Telmo Llanga, Bruce A Sullenger
{"title":"Reversible Aptamer Staining, Sorting, and Cleaning of Cells (Clean FACS) with Antidote Oligonucleotide or Nuclease Yields Fully Responsive Cells.","authors":"Martin D Requena, Amy Yan, Telmo Llanga, Bruce A Sullenger","doi":"10.1089/nat.2023.0050","DOIUrl":"10.1089/nat.2023.0050","url":null,"abstract":"<p><p>The ability to reverse the binding of aptamers to their target proteins has received considerable attention for developing controllable therapeutic agents. Recently, use of aptamers as reversible cell-sorting ligands has also sparked interest. Antibodies are currently utilized for isolating cells expressing a particular cell surface receptor. The inability to remove antibodies from isolated cells following sorting greatly limits their utility for many applications. Previously, we described how a particular aptamer-antidote oligonucleotide pair can isolate cells and clean them. Here, we demonstrate that this approach is generalizable; aptamers can simultaneously recognize more than one cell type during fluorescent activated cell sorting (FACS). Moreover, we describe a novel approach to reverse aptamer binding following cell sorting using a nuclease. This alternative strategy represents a cleaning approach that does not require the generation of antidote oligonucleotides for each aptamer and will greatly reduce the cost and expand the utility of Clean FACS.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"12-17"},"PeriodicalIF":4.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139575909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment of Reviewers 2023. 鸣谢 2023 年审稿人。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2024-02-01 Epub Date: 2023-12-14 DOI: 10.1089/nat.2023.29008.ack
{"title":"Acknowledgment of Reviewers 2023.","authors":"","doi":"10.1089/nat.2023.29008.ack","DOIUrl":"10.1089/nat.2023.29008.ack","url":null,"abstract":"","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":"34 1","pages":"35"},"PeriodicalIF":4.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139906178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodistribution of Radioactively Labeled Splice Modulating Antisense Oligonucleotides After Intracerebroventricular and Intrathecal Injection in Mice. 放射性标记的剪接调节反义寡核苷酸在小鼠脑室内和鞘内注射后的生物分布。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2024-02-01 DOI: 10.1089/nat.2023.0018
Tom Metz, Mick M Welling, Ernst Suidgeest, Esmée Nieuwenhuize, Thomas de Vlaam, Daniel Curtis, Tsinatkeab T Hailu, Louise van der Weerd, Willeke M C van Roon-Mom
{"title":"Biodistribution of Radioactively Labeled Splice Modulating Antisense Oligonucleotides After Intracerebroventricular and Intrathecal Injection in Mice.","authors":"Tom Metz, Mick M Welling, Ernst Suidgeest, Esmée Nieuwenhuize, Thomas de Vlaam, Daniel Curtis, Tsinatkeab T Hailu, Louise van der Weerd, Willeke M C van Roon-Mom","doi":"10.1089/nat.2023.0018","DOIUrl":"10.1089/nat.2023.0018","url":null,"abstract":"<p><p>Antisense oligonucleotides (AONs) are promising therapeutic candidates, especially for neurological diseases. Intracerebroventricular (ICV) injection is the predominant route of administration in mouse studies, while in clinical trials, intrathecal (IT) administration is mostly used. There is little knowledge on the differences in distribution of these injection methods within the same species over time. In this study, we compared the distribution of splice-switching AONs targeting exon 15 of amyloid precursor protein pre-mRNA injected via the ICV and IT route in mice. The AON was labeled with radioactive indium-111 and mice were imaged using single-photon emission computed tomography (SPECT) 0, 4, 24, 48, 72, and 96 h after injection. <i>In vivo</i> SPECT imaging showed <sup>111</sup>In-AON activity diffused throughout the central nervous system (CNS) in the first hours after injection. The <sup>111</sup>In-AON activity in the CNS persisted over the course of 4 days, while signal in the kidneys rapidly decreased. Postmortem counting in different organs and tissues showed very similar distribution of <sup>111</sup>In-AON activity throughout the body, while the signal in the different brain regions was higher with ICV injection. Overall, IT and ICV injection have very similar distribution patterns in the mouse, but ICV injection is much more effective in reaching the brain.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":"34 1","pages":"26-34"},"PeriodicalIF":4.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139932298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplexed In Vivo Screening Using Barcoded Aptamer Technology to Identify Oligonucleotide-Based Targeting Reagents. 利用条形码适配体技术进行多重体内筛选,以确定基于寡核苷酸的靶向试剂。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2024-01-01 Epub Date: 2024-05-16 DOI: 10.1089/nat.2024.0010
Brian J Thomas, Caitlyn Guldenpfennig, Mark A Daniels, Donald H Burke, David Porciani
{"title":"Multiplexed <i>In Vivo</i> Screening Using Barcoded Aptamer Technology to Identify Oligonucleotide-Based Targeting Reagents.","authors":"Brian J Thomas, Caitlyn Guldenpfennig, Mark A Daniels, Donald H Burke, David Porciani","doi":"10.1089/nat.2024.0010","DOIUrl":"10.1089/nat.2024.0010","url":null,"abstract":"<p><p>Recent FDA approvals of mRNA vaccines, short-interfering RNAs, and antisense oligonucleotides highlight the success of oligonucleotides as therapeutics. Aptamers are excellent affinity reagents that can selectively label protein biomarkers, but their clinical application has lagged. When formulating a given aptamer for <i>in vivo</i> use, molecular design details can determine biostability and biodistribution; therefore, extensive postselection manipulation is often required for each new design to identify clinically useful reagents harboring improved pharmacokinetic properties. Few methods are available to comprehensively screen such aptamers, especially <i>in vivo</i>, constituting a significant bottleneck in the field. In this study, we introduce barcoded aptamer technology (BApT) for multiplexed screening of predefined aptamer formulations <i>in vitro</i> and <i>in vivo</i>. We demonstrate this technology by simultaneously investigating 20 aptamer formulations, each harboring different molecular designs, for targeting Non-Small Cell Lung Cancer cells and tumors. Screening <i>in vitro</i> identified a 45 kDa bispecific formulation as the best cancer cell targeting reagent, whereas screening <i>in vivo</i> identified a 30 kDa monomeric formulation as the best tumor-specific targeting reagent. The multiplexed analysis pipeline also identified biodistribution phenotypes shared among formulations with similar molecular architectures. The BApT approach we describe here has the potential for broad application to fields where oligonucleotide-based targeting reagents are desired.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"109-124"},"PeriodicalIF":4.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250842/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140945568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antisense Oligonucleotide-Based Rescue of Complex Intronic Splicing Defects in ABCA4. 基于反义寡核苷酸的 ABCA4 复杂非线性剪接缺陷的修复。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2024-01-01 Epub Date: 2024-05-27 DOI: 10.1089/nat.2024.0008
Zelia Corradi, Rebekkah J Hitti-Malin, Laura A de Rooij, Alejandro Garanto, Rob W J Collin, Frans P M Cremers
{"title":"Antisense Oligonucleotide-Based Rescue of Complex Intronic Splicing Defects in <i>ABCA4</i>.","authors":"Zelia Corradi, Rebekkah J Hitti-Malin, Laura A de Rooij, Alejandro Garanto, Rob W J Collin, Frans P M Cremers","doi":"10.1089/nat.2024.0008","DOIUrl":"10.1089/nat.2024.0008","url":null,"abstract":"<p><p>The <i>ABCA4</i> gene, involved in Stargardt disease, has a high percentage of splice-altering pathogenic variants, some of which cause complex RNA defects. Although antisense oligonucleotides (AONs) have shown promising results in splicing modulation, they have not yet been used to target complex splicing defects. Here, we performed AON-based rescue studies on <i>ABCA4</i> complex splicing defects. Intron 13 variants c.1938-724A>G, c.1938-621G>A, c.1938-619A>G, and c.1938-514A>G all lead to the inclusion of different pseudo-exons (PEs) with and without an upstream PE (PE1). Intron 44 variant c.6148-84A>T results in multiple PE inclusions and/or exon skipping events. Five novel AONs were designed to target these defects. AON efficacy was assessed by <i>in vitro</i> splice assays using midigenes containing the variants of interest. All screened complex splicing defects were effectively rescued by the AONs. Although varying levels of efficacy were observed between AONs targeting the same PEs, for all variants at least one AON restored splicing to levels comparable or better than wildtype. In conclusion, AONs are a promising approach to target complex splicing defects in <i>ABCA4</i>.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"125-133"},"PeriodicalIF":4.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141155286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular Vesicles Loaded with Long Antisense RNAs Repress Severe Acute Respiratory Syndrome Coronavirus 2 Infection. 装载了长反义 RNA 的细胞外囊泡抑制了严重急性呼吸系统综合征冠状病毒 2 的感染。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2024-01-01 Epub Date: 2024-03-26 DOI: 10.1089/nat.2023.0078
Adi Idris, Surya Shrivastava, Aroon Supramaniam, Roslyn M Ray, Galina Shevchenko, Dhruba Acharya, Nigel A J McMillan, Kevin V Morris
{"title":"Extracellular Vesicles Loaded with Long Antisense RNAs Repress Severe Acute Respiratory Syndrome Coronavirus 2 Infection.","authors":"Adi Idris, Surya Shrivastava, Aroon Supramaniam, Roslyn M Ray, Galina Shevchenko, Dhruba Acharya, Nigel A J McMillan, Kevin V Morris","doi":"10.1089/nat.2023.0078","DOIUrl":"10.1089/nat.2023.0078","url":null,"abstract":"<p><p>Long antisense RNAs (asRNAs) have been observed to repress HIV and other virus expression in a manner that is refractory to viral evolution. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) disease, has a distinct ability to evolve resistance around antibody targeting, as was evident from the emergence of various SARS-CoV-2 spike antibody variants. Importantly, the effectiveness of current antivirals is waning due to the rapid emergence of new variants of concern, more recently the omicron variant. One means of avoiding the emergence of viral resistance is by using long asRNA to target SARS-CoV-2. Similar work has proven successful with HIV targeting by long asRNA. In this study, we describe a long asRNA targeting SARS-CoV-2 RNA-dependent RNA polymerase gene and the ability to deliver this RNA in extracellular vesicles (EVs) to repress virus expression. The observations presented in this study suggest that EV-delivered asRNAs are one means to targeting SARS-CoV-2 infection, which is both effective and broadly applicable as a means to control viral expression in the absence of mutation. This is the first demonstration of the use of engineered EVs to deliver long asRNA payloads for antiviral therapy.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"101-108"},"PeriodicalIF":4.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment of Reviewers 2023. 鸣谢 2023 年审稿人。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2023-12-14 DOI: 10.1089/nat.2023.29008.ack
{"title":"Acknowledgment of Reviewers 2023.","authors":"","doi":"10.1089/nat.2023.29008.ack","DOIUrl":"https://doi.org/10.1089/nat.2023.29008.ack","url":null,"abstract":"","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138797654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly Potent Antisense Oligonucleotides Locked Nucleic Acid Gapmers Targeting the SARS-CoV-2 RNA Genome. 针对严重急性呼吸系统综合征冠状病毒2型核糖核酸基因组的高效反义寡核苷酸锁定核酸缝隙子。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2023-12-01 Epub Date: 2023-09-29 DOI: 10.1089/nat.2023.0012
Vita Dauksaite, Ali Tas, Falk Wachowius, Anouk Spruit, Martijn J van Hemert, Eric J Snijder, Eric P van der Veer, Anton Jan van Zonneveld
{"title":"Highly Potent Antisense Oligonucleotides Locked Nucleic Acid Gapmers Targeting the SARS-CoV-2 RNA Genome.","authors":"Vita Dauksaite, Ali Tas, Falk Wachowius, Anouk Spruit, Martijn J van Hemert, Eric J Snijder, Eric P van der Veer, Anton Jan van Zonneveld","doi":"10.1089/nat.2023.0012","DOIUrl":"10.1089/nat.2023.0012","url":null,"abstract":"<p><p>The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused the current worldwide pandemic and the associated coronavirus disease 2019 with potentially lethal outcome. Although effective vaccines strongly contributed to reduce disease severity, establishing a toolbox to control current and newly emerging coronaviruses of epidemic concern requires the development of novel therapeutic compounds, to treat severely infected individuals and to prevent virus transmission. Here we present a therapeutic strategy targeting the SARS-CoV-2 RNA genome using antisense oligonucleotides (ASOs). We demonstrate that selected locked nucleic acid gapmers have the potency to reduce the <i>in vitro</i> intracellular viral load by up to 96%. Our promising results strongly support the case for further development of our preselected ASOs as therapeutic or prophylactic antiviral agents.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"381-385"},"PeriodicalIF":4.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41130043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenges of Assessing Exon 53 Skipping of the Human DMD Transcript with Locked Nucleic Acid-Modified Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy. 用锁定核酸修饰的反义寡核苷酸在杜氏肌营养不良小鼠模型中评估人DMD转录物外显子53跳变的挑战
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2023-12-01 DOI: 10.1089/nat.2023.0038
Sarah Engelbeen, Daniel O'Reilly, Davy Van De Vijver, Ingrid Verhaart, Maaike van Putten, Vignesh Hariharan, Matthew Hassler, Anastasia Khvorova, Masad J Damha, Annemieke Aartsma-Rus
{"title":"Challenges of Assessing Exon 53 Skipping of the Human <i>DMD</i> Transcript with Locked Nucleic Acid-Modified Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy.","authors":"Sarah Engelbeen, Daniel O'Reilly, Davy Van De Vijver, Ingrid Verhaart, Maaike van Putten, Vignesh Hariharan, Matthew Hassler, Anastasia Khvorova, Masad J Damha, Annemieke Aartsma-Rus","doi":"10.1089/nat.2023.0038","DOIUrl":"10.1089/nat.2023.0038","url":null,"abstract":"<p><p>Antisense oligonucleotide (AON)-mediated exon skipping is a promising therapeutic approach for Duchenne muscular dystrophy (DMD) patients to restore dystrophin expression by reframing the disrupted open reading frame of the <i>DMD</i> transcript. However, the treatment efficacy of the already conditionally approved AONs remains low. Aiming to optimize AON efficiency, we assessed exon 53 skipping of the <i>DMD</i> transcript with different chemically modified AONs, all with a phosphorothioate backbone: 2'-O-methyl (2'OMe), locked nucleic acid (LNA)-2'OMe, 2'-fluoro (FRNA), LNA-FRNA, αLNA-FRNA, and FANA-LNA-FRNA. Efficient exon 53 skipping was observed with the FRNA, LNA-FRNA, and LNA-2'OMe AONs in human control myoblast cultures. Weekly subcutaneous injections (50 mg/kg AON) for a duration of 6 weeks were well tolerated by hDMDdel52/<i>mdx</i> males. Treatment with the LNA-FRNA and LNA-2'OMe AONs resulted in pronounced exon 53 skip levels in skeletal muscles and heart up to 90%, but no dystrophin restoration was observed. This discrepancy was mainly ascribed to the strong binding nature of LNA modifications to RNA, thereby interfering with the amplification of the unskipped product resulting in artificial overamplification of the exon 53 skip product. Our study highlights that treatment effect on RNA and protein level should both be considered when assessing AON efficiency.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":"33 6","pages":"348-360"},"PeriodicalIF":4.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698779/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138445630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信