Nucleic acid therapeutics最新文献

筛选
英文 中文
Acknowledgment of Reviewers 2023. 鸣谢 2023 年审稿人。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2023-12-14 DOI: 10.1089/nat.2023.29008.ack
{"title":"Acknowledgment of Reviewers 2023.","authors":"","doi":"10.1089/nat.2023.29008.ack","DOIUrl":"https://doi.org/10.1089/nat.2023.29008.ack","url":null,"abstract":"","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138797654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly Potent Antisense Oligonucleotides Locked Nucleic Acid Gapmers Targeting the SARS-CoV-2 RNA Genome. 针对严重急性呼吸系统综合征冠状病毒2型核糖核酸基因组的高效反义寡核苷酸锁定核酸缝隙子。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2023-12-01 Epub Date: 2023-09-29 DOI: 10.1089/nat.2023.0012
Vita Dauksaite, Ali Tas, Falk Wachowius, Anouk Spruit, Martijn J van Hemert, Eric J Snijder, Eric P van der Veer, Anton Jan van Zonneveld
{"title":"Highly Potent Antisense Oligonucleotides Locked Nucleic Acid Gapmers Targeting the SARS-CoV-2 RNA Genome.","authors":"Vita Dauksaite, Ali Tas, Falk Wachowius, Anouk Spruit, Martijn J van Hemert, Eric J Snijder, Eric P van der Veer, Anton Jan van Zonneveld","doi":"10.1089/nat.2023.0012","DOIUrl":"10.1089/nat.2023.0012","url":null,"abstract":"<p><p>The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused the current worldwide pandemic and the associated coronavirus disease 2019 with potentially lethal outcome. Although effective vaccines strongly contributed to reduce disease severity, establishing a toolbox to control current and newly emerging coronaviruses of epidemic concern requires the development of novel therapeutic compounds, to treat severely infected individuals and to prevent virus transmission. Here we present a therapeutic strategy targeting the SARS-CoV-2 RNA genome using antisense oligonucleotides (ASOs). We demonstrate that selected locked nucleic acid gapmers have the potency to reduce the <i>in vitro</i> intracellular viral load by up to 96%. Our promising results strongly support the case for further development of our preselected ASOs as therapeutic or prophylactic antiviral agents.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"381-385"},"PeriodicalIF":4.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41130043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenges of Assessing Exon 53 Skipping of the Human DMD Transcript with Locked Nucleic Acid-Modified Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy. 用锁定核酸修饰的反义寡核苷酸在杜氏肌营养不良小鼠模型中评估人DMD转录物外显子53跳变的挑战
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2023-12-01 DOI: 10.1089/nat.2023.0038
Sarah Engelbeen, Daniel O'Reilly, Davy Van De Vijver, Ingrid Verhaart, Maaike van Putten, Vignesh Hariharan, Matthew Hassler, Anastasia Khvorova, Masad J Damha, Annemieke Aartsma-Rus
{"title":"Challenges of Assessing Exon 53 Skipping of the Human <i>DMD</i> Transcript with Locked Nucleic Acid-Modified Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy.","authors":"Sarah Engelbeen, Daniel O'Reilly, Davy Van De Vijver, Ingrid Verhaart, Maaike van Putten, Vignesh Hariharan, Matthew Hassler, Anastasia Khvorova, Masad J Damha, Annemieke Aartsma-Rus","doi":"10.1089/nat.2023.0038","DOIUrl":"10.1089/nat.2023.0038","url":null,"abstract":"<p><p>Antisense oligonucleotide (AON)-mediated exon skipping is a promising therapeutic approach for Duchenne muscular dystrophy (DMD) patients to restore dystrophin expression by reframing the disrupted open reading frame of the <i>DMD</i> transcript. However, the treatment efficacy of the already conditionally approved AONs remains low. Aiming to optimize AON efficiency, we assessed exon 53 skipping of the <i>DMD</i> transcript with different chemically modified AONs, all with a phosphorothioate backbone: 2'-O-methyl (2'OMe), locked nucleic acid (LNA)-2'OMe, 2'-fluoro (FRNA), LNA-FRNA, αLNA-FRNA, and FANA-LNA-FRNA. Efficient exon 53 skipping was observed with the FRNA, LNA-FRNA, and LNA-2'OMe AONs in human control myoblast cultures. Weekly subcutaneous injections (50 mg/kg AON) for a duration of 6 weeks were well tolerated by hDMDdel52/<i>mdx</i> males. Treatment with the LNA-FRNA and LNA-2'OMe AONs resulted in pronounced exon 53 skip levels in skeletal muscles and heart up to 90%, but no dystrophin restoration was observed. This discrepancy was mainly ascribed to the strong binding nature of LNA modifications to RNA, thereby interfering with the amplification of the unskipped product resulting in artificial overamplification of the exon 53 skip product. Our study highlights that treatment effect on RNA and protein level should both be considered when assessing AON efficiency.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":"33 6","pages":"348-360"},"PeriodicalIF":4.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698779/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138445630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of Gene Expression in the Eye with Antisense Oligonucleotides. 反义寡核苷酸对眼睛基因表达的调控。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2023-12-01 Epub Date: 2023-11-02 DOI: 10.1089/nat.2023.0044
Jiaxin Hu, Xin Gong, Yan Fan, Selina Aguilar, Frank Rigo, Thahza P Prakash, David R Corey, V Vinod Mootha
{"title":"Modulation of Gene Expression in the Eye with Antisense Oligonucleotides.","authors":"Jiaxin Hu, Xin Gong, Yan Fan, Selina Aguilar, Frank Rigo, Thahza P Prakash, David R Corey, V Vinod Mootha","doi":"10.1089/nat.2023.0044","DOIUrl":"10.1089/nat.2023.0044","url":null,"abstract":"<p><p>One advantage of antisense oligonucleotides (ASOs) for drug development is their long-lasting gene knockdown after administration <i>in vivo</i>. In this study, we examine the effect on gene expression after intraocular injection in target tissues in the eye. We examined expression levels of the <i>Malat1</i> gene after intracameral or intravitreal (IV) injection of an anti-<i>Malat1</i> ASO in corneal epithelium/stroma, corneal endothelium, lens capsule epithelium, neurosensory retina, and retinal pigment epithelium/choroid of the mouse eye. We assessed potency of the compound at 7 days as well as duration of the gene knockdown at 14, 28, 60, 90, and 120 days. The ASO was more potent when delivered by IV injection relative to intracameral injection, regardless of whether the tissues analyzed were at the front or back of the eye. For corneal endothelium, inhibition was >50% after 120 days for ASO at 50 μg. At IV dosages of 6 μg, we observed >75% inhibition of gene expression in the retina and lens epithelium for up to 120 days. ASOs have potential as long-lasting gene knockdown agents in the mouse eye, but efficacy varies depending on the specific ocular target tissue and injection protocol.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"339-347"},"PeriodicalIF":4.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698777/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71425545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cholesterol-Conjugated Supramolecular Multimeric siRNAs: Effect of siRNA Length on Accumulation and Silencing In Vitro and In Vivo. 胆固醇偶联的超分子多聚siRNA:siRNA长度对体外和体内积累和沉默的影响。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2023-12-01 Epub Date: 2023-11-09 DOI: 10.1089/nat.2023.0051
Ivan V Chernikov, Ul'yana A Ponomareva, Mariya I Meschaninova, Irina K Bachkova, Anna A Teterina, Daniil V Gladkikh, Innokenty A Savin, Valentin V Vlassov, Marina A Zenkova, Elena L Chernolovskaya
{"title":"Cholesterol-Conjugated Supramolecular Multimeric siRNAs: Effect of siRNA Length on Accumulation and Silencing <i>In Vitro</i> and <i>In Vivo</i>.","authors":"Ivan V Chernikov, Ul'yana A Ponomareva, Mariya I Meschaninova, Irina K Bachkova, Anna A Teterina, Daniil V Gladkikh, Innokenty A Savin, Valentin V Vlassov, Marina A Zenkova, Elena L Chernolovskaya","doi":"10.1089/nat.2023.0051","DOIUrl":"10.1089/nat.2023.0051","url":null,"abstract":"<p><p>Conjugation of small interfering RNA (siRNA) with lipophilic molecules is one of the most promising approaches for delivering siRNA <i>in vivo</i>. The rate of molecular weight-dependent siRNA renal clearance is critical for the efficiency of this process. In this study, we prepared cholesterol-containing supramolecular complexes containing from three to eight antisense strands and examined their accumulation and silencing activity <i>in vitro</i> and <i>in vivo</i>. We have shown for the first time that such complexes with 2'F, 2'OMe, and LNA modifications exhibit interfering activity both in carrier-mediated and carrier-free modes. Silencing data from a xenograft tumor model show that 4 days after intravenous injection of cholesterol-containing monomers and supramolecular trimers, the levels of <i>MDR1</i> mRNA in the tumor decreased by 85% and 68%, respectively. The <i>in vivo</i> accumulation data demonstrated that the formation of supramolecular structures with three or four antisense strands enhanced their accumulation in the liver. After addition of two PS modifications at the ends of antisense strands, 47% and 67% reductions of <i>Ttr</i> mRNA levels in the liver tissue were detected 7 days after administration of monomers and supramolecular trimers, respectively. Thus, we have obtained a new type of RNAi inducer that is convenient for synthesis and provides opportunities for modifications.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"361-373"},"PeriodicalIF":4.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72014971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of the Inhibition of Organic Anion Transporter on Tricyclo-DNA-Mediated Exon Skipping in the mdx Mouse Model. 有机阴离子转运蛋白对三环dna介导的mdx小鼠外显子跳变的影响
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2023-12-01 Epub Date: 2023-11-15 DOI: 10.1089/nat.2023.0046
Flavien Bizot, Thomas Tensorer, Luis Garcia, Aurélie Goyenvalle
{"title":"Impact of the Inhibition of Organic Anion Transporter on Tricyclo-DNA-Mediated Exon Skipping in the <i>mdx</i> Mouse Model.","authors":"Flavien Bizot, Thomas Tensorer, Luis Garcia, Aurélie Goyenvalle","doi":"10.1089/nat.2023.0046","DOIUrl":"10.1089/nat.2023.0046","url":null,"abstract":"<p><p>Antisense-mediated exon skipping is one of the most promising therapeutic strategies for Duchenne muscular dystrophy (DMD) and some antisense oligonucleotide (ASO) drugs have already been approved by the U.S. FDA for DMD. The potential of this therapy is still limited by several challenges including the poor distribution of ASOs to target tissues. Indeed, most of them accumulate in the kidney and tend to be rapidly eliminated after systemic delivery. We hypothesized here that preventing renal clearance of ASO using organic anion transporter (OAT) inhibitor could increase the bioavailability of ASOs and thus their distribution to target tissues and ultimately their efficacy in muscles. <i>Mdx</i> mice were, therefore, treated with ASO with or without the OAT inhibitor named probenecid. Our findings indicate that OAT inhibition, or at least using probenecid, does not improve the therapeutic potential of ASO-mediated exon-skipping approaches for the treatment of DMD.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"374-380"},"PeriodicalIF":4.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134649391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delivery Characterization of SPL84 Inhaled Antisense Oligonucleotide Drug for 3849 + 10 kb C- > T Cystic Fibrosis Patients. SPL84吸入3849反义寡核苷酸药物的递送特性 + 10 kb C->T囊性纤维化患者。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2023-10-01 Epub Date: 2023-08-29 DOI: 10.1089/nat.2023.0015
Efrat Ozeri-Galai, Lital Friedman, Ofra Barchad-Avitzur, Matthew R Markovetz, William Boone, Kaitlyn R Rouillard, Chava D Stampfer, Yifat S Oren, David B Hill, Batsheva Kerem, Gili Hart
{"title":"Delivery Characterization of SPL84 Inhaled Antisense Oligonucleotide Drug for 3849 + 10 kb C- > T Cystic Fibrosis Patients.","authors":"Efrat Ozeri-Galai,&nbsp;Lital Friedman,&nbsp;Ofra Barchad-Avitzur,&nbsp;Matthew R Markovetz,&nbsp;William Boone,&nbsp;Kaitlyn R Rouillard,&nbsp;Chava D Stampfer,&nbsp;Yifat S Oren,&nbsp;David B Hill,&nbsp;Batsheva Kerem,&nbsp;Gili Hart","doi":"10.1089/nat.2023.0015","DOIUrl":"10.1089/nat.2023.0015","url":null,"abstract":"<p><p>Recent advances in the therapeutic potential of RNA-related treatments, specifically for antisense oligonucleotide (ASO)-based drugs, have led to increased numbers of ASO regulatory approvals. In this study, we focus on SPL84, an inhaled ASO-based drug, developed for the treatment of the pulmonary disease cystic fibrosis (CF). Pulmonary drug delivery is challenging, due to a variety of biological, physical, chemical, and structural barriers, especially when targeting the cell nucleus. The distribution of SPL84 throughout the lungs, penetration into the epithelial cells and nucleus, and structural stability are critical parameters that will impact drug efficacy in a clinical setting. In this study, we demonstrate broad distribution, as well as cell and nucleus penetration of SPL84 in mouse and monkey lungs. <i>In vivo</i> and <i>in vitro</i> studies confirmed the stability of our inhaled drug in CF patient-derived mucus and in lung lysosomal extracts. The mobility of SPL84 through hyperconcentrated mucus was also demonstrated. Our results, supported by a promising preclinical pharmacological effect of full restoration of cystic fibrosis transmembrane conductance regulator channel activity, emphasize the high potential of SPL84 as an effective drug for the treatment of CF patients. In addition, successfully tackling the lung distribution of SPL84 offers immense opportunities for further development of SpliSense's inhaled ASO-based drugs for unmet needs in pulmonary diseases.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"306-318"},"PeriodicalIF":4.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10467738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OSWG Recommended Approaches to the Nonclinical Pharmacokinetic (ADME) Characterization of Therapeutic Oligonucleotides. OSWG推荐的治疗性寡核苷酸的非临床药代动力学(ADME)表征方法。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2023-10-01 Epub Date: 2023-08-17 DOI: 10.1089/nat.2023.0011
Cindy L Berman, Madeleine Antonsson, Sandor Batkai, Sieto Bosgra, Girish R Chopda, Wouter Driessen, Jeffrey Foy, Chopie Hassan, Xiao Shelley Hu, Hyun Gyung Jang, Meena, Mark Sanseverino, Thomas Thum, Yanfeng Wang, Martin Wild, Jing-Tao Wu
{"title":"OSWG Recommended Approaches to the Nonclinical Pharmacokinetic (ADME) Characterization of Therapeutic Oligonucleotides.","authors":"Cindy L Berman,&nbsp;Madeleine Antonsson,&nbsp;Sandor Batkai,&nbsp;Sieto Bosgra,&nbsp;Girish R Chopda,&nbsp;Wouter Driessen,&nbsp;Jeffrey Foy,&nbsp;Chopie Hassan,&nbsp;Xiao Shelley Hu,&nbsp;Hyun Gyung Jang,&nbsp;Meena,&nbsp;Mark Sanseverino,&nbsp;Thomas Thum,&nbsp;Yanfeng Wang,&nbsp;Martin Wild,&nbsp;Jing-Tao Wu","doi":"10.1089/nat.2023.0011","DOIUrl":"10.1089/nat.2023.0011","url":null,"abstract":"<p><p>This white paper summarizes the recommendations of the absorption, distribution, metabolism, and excretion (ADME) Subcommittee of the Oligonucleotide Safety Working Group for the characterization of absorption, distribution, metabolism, and excretion of oligonucleotide (ON) therapeutics in nonclinical studies. In general, the recommended approach is similar to that for small molecule drugs. However, some differences in timing and/or scope may be warranted due to the greater consistency of results across ON classes as compared with the diversity among small molecule classes. For some types of studies, a platform-based approach may be appropriate; once sufficient data are available for the platform, presentation of these data should be sufficient to support development of additional ONs of the same platform. These recommendations can serve as a starting point for nonclinical study design and foundation for discussions with regulatory agencies.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"287-305"},"PeriodicalIF":4.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561745/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10011698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Oligonucleotide 2'-O-Alkyl N3'→P5' (Thio)-Phosphoramidates as Potent Antisense Agents: Physicochemical Properties and Biological Activity. 新寡核苷酸2'-O-烷基N3'→P5’(硫代)-磷酰胺类有效反义试剂的理化性质和生物活性。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2023-10-01 Epub Date: 2023-08-28 DOI: 10.1089/nat.2023.0014
Saúl Martínez-Montero, Vivek K Rajwanshi, Rajendra K Pandey, N Tilani S De Costa, Jin Hong, Leonid Beigelman, Sergei M Gryaznov, Soheil Pourshahian
{"title":"New Oligonucleotide 2'-O-Alkyl N3'→P5' (Thio)-Phosphoramidates as Potent Antisense Agents: Physicochemical Properties and Biological Activity.","authors":"Saúl Martínez-Montero,&nbsp;Vivek K Rajwanshi,&nbsp;Rajendra K Pandey,&nbsp;N Tilani S De Costa,&nbsp;Jin Hong,&nbsp;Leonid Beigelman,&nbsp;Sergei M Gryaznov,&nbsp;Soheil Pourshahian","doi":"10.1089/nat.2023.0014","DOIUrl":"10.1089/nat.2023.0014","url":null,"abstract":"We describe here the design, synthesis, physicochemical properties, and hepatitis B antiviral activity of new 2'-O-alkyl ribonucleotide N3'→P5' phosphoramidate (2'-O-alkyl-NPO) and (thio)-phosphoramidite (2'-O-alkyl-NPS) oligonucleotide analogs. Oligonucleotides with different 2'-O-alkyl modifications such as 2'-O-methyl, -O-ethyl, -O-allyl, and -O-methoxyethyl combined with 3'-amino sugar-phosphate backbone were synthesized and evaluated. These molecules form stable duplexes with complementary DNA and RNA strands. They show an increase in duplex melting temperatures of up to 2.5°C and 4°C per linkage, respectively, compared to unmodified DNA. The results agree with predominantly C3'-endo sugar pucker conformation. Moreover, 2'-O-alkyl phosphoramidites demonstrate higher hydrolytic stability at pH 5.5 than 2'-deoxy NPOs. In addition, the relative lipophilicity of the 2'-O-alkyl-NPO and NPS oligonucleotides is higher than that of their 3'-O- counterparts. The 2'-O-alkyl-NPS oligonucleotides were evaluated as antisense (ASO) compounds in vitro and in vivo using Hepatitis B virus as a model system. Subcutaneous delivery of GalNAc conjugated 2'-O-MOE-NPS gapmers demonstrated higher activity than the 3'-O-containing 2'-O-MOE counterpart. The properties of 2'-O-alkyl-NPS constructs make them attractive candidates as ASO suitable for further evaluation and development.","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":" ","pages":"319-328"},"PeriodicalIF":4.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10088221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Long Asymmetric siRNA Structure for Target Gene Silencing and Immune Stimulation in Mammalian Cells. 用于哺乳动物细胞靶基因沉默和免疫刺激的长不对称siRNA结构的开发。
IF 4 2区 医学
Nucleic acid therapeutics Pub Date : 2023-10-01 DOI: 10.1089/nat.2023.0003
Soonkap Kim, Young Gyu Kang, Jaejin Kim, Pooja Dua, Dong-Ki Lee
{"title":"Development of Long Asymmetric siRNA Structure for Target Gene Silencing and Immune Stimulation in Mammalian Cells.","authors":"Soonkap Kim,&nbsp;Young Gyu Kang,&nbsp;Jaejin Kim,&nbsp;Pooja Dua,&nbsp;Dong-Ki Lee","doi":"10.1089/nat.2023.0003","DOIUrl":"10.1089/nat.2023.0003","url":null,"abstract":"<p><p>Post-transcriptional regulation of transcript abundances by RNA interference (<i>RNA</i>i) is a widely conserved regulatory mechanism to control cellular processes. We previously introduced an alternative siRNA structure called asymmetric siRNA (asiRNA), and showed that asiRNA exhibits comparable gene-silencing efficiency with reduced off-target effects compared with conventional siRNAs. However, to what extent the length of the guide strand affects the gene-silencing efficiency of asiRNAs is still elusive. In this study, we analyzed in detail the gene-silencing ability of asiRNAs along the guide strand length and immunostimulatory capacity of asiRNAs. We generated asiRNAs containing various guide strand lengths ranging from 25 to 29 nt, called long asiRNA (lasiRNA). We found that the gene-silencing activity of lasiRNAs decreased as the length of the guide strand increased. Nonetheless, the 3'-end overhangs that are complementary to the target gene have higher efficiency for gene silencing compared with mismatched overhangs. In addition, we found that the silencing efficiency of lasiRNAs correlates with their Ago2-binding affinity. Finally, replacing the mismatched overhang with a TLR7- or TLR9-associated immune response motif induced a toll-like receptor (TLR)-specific immune response and retained gene-silencing activity. Our findings demonstrate that lasiRNA structures can be tailored to function as bifunctional siRNA, which trigger a specific immune response combined with target gene silencing. Taken together, we anticipate that our findings provide a road map for the subsequent development of immune-stimulating lasiRNA, which bear the potential to be applied for therapeutic benefits.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":"33 5","pages":"329-337"},"PeriodicalIF":4.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41179507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信