Nitrogen最新文献

筛选
英文 中文
Influence of Sink Size on 15N and 13C Allocation during Different Phenological Phases of Spring Wheat Cultivars 库大小对春小麦不同物候期15N和13C分配的影响
Nitrogen Pub Date : 2023-01-19 DOI: 10.3390/nitrogen4010004
K. Götz, Osman Erekul
{"title":"Influence of Sink Size on 15N and 13C Allocation during Different Phenological Phases of Spring Wheat Cultivars","authors":"K. Götz, Osman Erekul","doi":"10.3390/nitrogen4010004","DOIUrl":"https://doi.org/10.3390/nitrogen4010004","url":null,"abstract":"The scientific objective of this study was to answer the question of whether sink limitation is also true for high quality wheat varieties. We examined the incorporation of 15N and 13C during phenological phases into vegetative parts and grains of Elite wheat Triso (E) and Quality wheat Naxos (A) when the spike is halved. Three splits of fertilizer were applied at EC 11, EC 30, EC 59, whereby 10% at EC 30 and EC 59 was 15N, and plants were also labelled with 13CO2. The application of only the third split as 15N, combined with spike-halving, resulted in a significantly higher 15N-content (+11%) of 0.486 mg 15N/g DM, compared to the control (0.437 mg15N/g DM). Labelling whole plants with 13CO2 at EC 59 resulted in a significantly higher 13C-content—40%—(0.223 mg 13C/g DM) of the grains of the control for Triso at the fully-ripe stage (EC 89), compared to Naxos (0.160 mg 13C/g DM). This superiority was reduced to 34%, and was also demonstrated by spike-halving (0.226 mg 13C/g DM, 0.169 mg 13C/g DM). Remobilization of 15N for control and spike-halving treatments were 68.2% and 61.1%, respectively. This clearly demonstrates that the reduction of the sink size by spike-halving leads to a 7% reduction in the remobilization of 15N from vegetative to reproductive tissues.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89094134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment to the Reviewers of Nitrogen in 2022 对2022年《氮气》审稿人的感谢
Nitrogen Pub Date : 2023-01-18 DOI: 10.3390/nitrogen4010003
{"title":"Acknowledgment to the Reviewers of Nitrogen in 2022","authors":"","doi":"10.3390/nitrogen4010003","DOIUrl":"https://doi.org/10.3390/nitrogen4010003","url":null,"abstract":"High-quality academic publishing is built on rigorous peer review [...]","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76632551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental Impact Assessment for Animal Waste, Organic and Synthetic Fertilizers 动物粪便、有机和合成肥料的环境影响评价
Nitrogen Pub Date : 2023-01-06 DOI: 10.3390/nitrogen4010002
V. Litskas
{"title":"Environmental Impact Assessment for Animal Waste, Organic and Synthetic Fertilizers","authors":"V. Litskas","doi":"10.3390/nitrogen4010002","DOIUrl":"https://doi.org/10.3390/nitrogen4010002","url":null,"abstract":"The use of fertilizers is of the utmost importance for food security on a global scale. However, fertilizer production and overuse may yield environmental issues. In this research, Life Cycle Assessment (LCA) was used to estimate eighteen environmental impact categories for six different fertilizer products: three synthetic (ammonium nitrate; calcium ammonium nitrate; and urea ammonium nitrate) and three organic (cattle manure; compost; and a mixture of compost and synthetic fertilizer). The processes for fertilizer production were obtained from the Agribalyse database. The system boundaries were from cradle to factory gate (or farm gate in the case of animal waste), and the impact indicators were calculated per kg of nitrogen (N). The data showed that the organo-mineral fertilizer (a mix of compost and synthetic fertilizer) had the highest environmental impact according to the results for most of the impact categories. The median values for this product regarding water consumption, fossil resource use and global warming potential were 322.5 L, 3.82 kg oil equivalent and 13.70 kg CO2 equivalent, respectively, per kg of N. The respective values for cattle manure, for which the lowest environmental impact was observed, were 0.23 L of water, 0.002 kg oil-eq and 3.29 kg of CO2-eq, respectively, per kg of N. Further research should focus on the determination of the impact from other stages of the life cycle (e.g., transportation and application to the field) which were not included in this work. This research could support the selection of N fertilizer in sustainable food production.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"76 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78715708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Potential of Biochar-Based Organic Fertilizers on Increasing Soil Fertility, Available Nutrients, and Okra Productivity in Slightly Acidic Sandy Loam Soil 生物炭基有机肥提高微酸性砂壤土土壤肥力、速效养分和秋葵生产力的潜力
Nitrogen Pub Date : 2022-12-31 DOI: 10.3390/nitrogen4010001
Nischal Acharya, S. Vista, S. Shrestha, Nabina Neupane, N. Pandit
{"title":"Potential of Biochar-Based Organic Fertilizers on Increasing Soil Fertility, Available Nutrients, and Okra Productivity in Slightly Acidic Sandy Loam Soil","authors":"Nischal Acharya, S. Vista, S. Shrestha, Nabina Neupane, N. Pandit","doi":"10.3390/nitrogen4010001","DOIUrl":"https://doi.org/10.3390/nitrogen4010001","url":null,"abstract":"Reducing chemical fertilizers is critical for maintaining soil health and minimizing environmental damage. Biochar-based organic fertilizers reduce fertilizer inputs, improve soil fertility, increase crop productivity, and reduce environmental risks. In this study, a pot experiment was conducted in a greenhouse to assess the potential of biochar-based organic and inorganic fertilizers to improve soil fertility and Okra yield. Seven treatments with three replicates were arranged in a completely randomized design (CRD). Three treatments included biochar-blended formulations (i) biochar mixed with mineral NPK fertilizer (BF), (ii) biochar mixed with vermicompost (BV), and (iii) biochar mixed with goat manure (BM); two treatments included biochar enrichment formulations (iv) biochar enriched with cow urine (BCU) and (v) biochar enriched with mineral NPK fertilizer in aqueous solution (BFW), and the remaining two included control treatments; (vi) control (CK: no biochar and no fertilizers) and (vii) fertilized control (F: only recommended NPK fertilizer and no biochar). Mineral NPK fertilizers in BF, BFW, and F were applied at the recommended rate as urea, di-ammonium phosphate (DAP), and muriate of potash (MOP). Organic fertilizers in BV, BM, and BCU treatments were applied in equal quantities. All biochar-amended treatments showed improved soil chemical properties with higher pH, organic carbon, total N, and available P and K compared to the two non-biochar control plots (CK and F). Biochar blended with goat manure (BM) showed the highest effect on soil fertility and fruit yield. BM (51.8 t ha−1) increased fruit yield by 89% over CK (27.4 t ha−1) and by 88% over F (27 t ha−1). Similarly, cow urine-enriched biochar (BCU) (35 t ha−1) increased fruit yield by 29% and 28% compared to CK and F, respectively. Soil pH, OC, and nutrient availability (total N, available P, and available K) showed a significantly positive relationship with fruit yield. The study suggests that using biochar-based organic fertilizers, such as BCU and BM, could outperform recommended mineral fertilizers (F) and produce higher yields and healthy soils, thereby contributing to mitigating the current food security and environmental concerns of the country.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83664595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Evaluation of Alkaline Hydrolyzable Organic Nitrogen as an Index of Nitrogen Mineralization Potential of Some Coastal Savannah Soils of Ghana 加纳沿海草原土壤碱性可水解有机氮作为氮矿化潜力指标的评价
Nitrogen Pub Date : 2022-12-16 DOI: 10.3390/nitrogen3040043
D. Dodor, M. Kamara, Abena Asamoah-Bediako, S. Adiku, D. MacCarthy, S. Kumahor, D. Neina
{"title":"Evaluation of Alkaline Hydrolyzable Organic Nitrogen as an Index of Nitrogen Mineralization Potential of Some Coastal Savannah Soils of Ghana","authors":"D. Dodor, M. Kamara, Abena Asamoah-Bediako, S. Adiku, D. MacCarthy, S. Kumahor, D. Neina","doi":"10.3390/nitrogen3040043","DOIUrl":"https://doi.org/10.3390/nitrogen3040043","url":null,"abstract":"Numerous biological and chemical methods have been proposed over the years for estimating the nitrogen (N) mineralization capacity of soils; however, none of them has found general use in soil fertility testing. The efficacy of a recently proposed alkaline hydrolysis method for assessing N availability in soils compared with the standard long-term incubation technique for determining potentially available N was evaluated. The nitrogen mineralization of 12 surface soils incubated under aerobic conditions at 25 °C for 26 weeks was determined. Field-moist soils were direct-steam distilled with 1 M KOH or 1 M NaOH; the NH3 released was trapped in boric acid, and its concentration was determined successively every 5 min for 40 min. The cumulative N mineralized or hydrolyzed was fitted to the first-order exponential equation to determine the potentially mineralizable N (No) and an analogous “potentially hydrolyzable N (Nmax)” for the soils. The flush of CO2 (fCO2) following the rewetting and incubation of air-dried soils under aerobic conditions for 3 days was also determined. The results showed that the Nmax values differed considerably among the soils, indicating differences in the chemical nature and reactivity of the organic N content of the soils, and were significantly correlated with No and fCO2 values. The estimated Nmax and No values ranged from 105 to 371 mg N kg−1 and 121 to 292 mg kg−1, respectively. Based on the simple and inexpensive nature of the alkaline hydrolysis procedure, the reduction in the incubation time required to obtain No (months to minutes), and the strong association between Nmax and No, we concluded that Nmax is a good predictor of the biologically discrete and quantifiable labile pool of mineralizable soil organic N (ON), and the use of the alkaline hydrolyzable ON as a predictor of No merits consideration for routine use in soil testing laboratories for estimating the N-supplying capacity of soils.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77576708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N Absorption, Transport, and Recycling in Nodulated Soybean Plants by Split-Root Experiment Using 15N-Labeled Nitrate 15n标记硝酸盐对根瘤大豆植株氮素吸收、转运和再循环的影响
Nitrogen Pub Date : 2022-12-05 DOI: 10.3390/nitrogen3040042
Marika Doi, K. Higuchi, Akihiro Saito, Takashi Sato, T. Ohyama
{"title":"N Absorption, Transport, and Recycling in Nodulated Soybean Plants by Split-Root Experiment Using 15N-Labeled Nitrate","authors":"Marika Doi, K. Higuchi, Akihiro Saito, Takashi Sato, T. Ohyama","doi":"10.3390/nitrogen3040042","DOIUrl":"https://doi.org/10.3390/nitrogen3040042","url":null,"abstract":"Nitrate concentration is variable in soils, so the absorbed N from roots in a high-nitrate site is recycled from shoots to the root parts in N-poor niche. In this report, the absorption, transport, and recycling of N derived from 15N-labeled nitrate were investigated with split-root systems of nodulated soybean. The NO3− accumulated in the root in 5 mM NO3− solution; however, it was not detected in the roots and nodules in an N-free pot, indicating that NO3− itself is not recycled from leaves to underground parts. The total amount of 15NO3− absorption from 2 to 4 days of the plant with the N-free opposite half-root accelerated by 40% compared with both half-roots that received NO3−. This result might be due to the compensation for the N demand under one half-root could absorb NO3−. About 2–3% of the absorbed 15N was recycled to the opposite half-root, irrespective of N-free or NO3− solution, suggesting that N recycling from leaves to the roots was not affected by the presence or absence of NO3−. Concentrations of asparagine increased in the half-roots supplied with NO3− but not in N-free half-roots, suggesting that asparagine may not be a systemic signal for N status.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"100 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80700153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Effect of Late 15N-Fertilization and Water Deficit on Allocation into the Gluten of German and Mediterranean Spring Wheat Cultivars 晚施15n和水分亏缺对德国和地中海春小麦品种面筋分配的影响
Nitrogen Pub Date : 2022-11-22 DOI: 10.3390/nitrogen3040041
K. Götz, Osman Erekul
{"title":"Effect of Late 15N-Fertilization and Water Deficit on Allocation into the Gluten of German and Mediterranean Spring Wheat Cultivars","authors":"K. Götz, Osman Erekul","doi":"10.3390/nitrogen3040041","DOIUrl":"https://doi.org/10.3390/nitrogen3040041","url":null,"abstract":"In a split N-application system, the objective was to quantify N/15N in gluten and non-gluten proteins after the late application of 30 or 60 kg N, whereby 10% of the third split was applied as 15N. This fertilization was combined with a reduced water supply for 21 days (well-watered (ww); water deficit (wd)). German spring wheat cultivars, Elite wheat Taifun, Quality wheat Monsun and cultivars from the Mediterranean territory, Golia, Gönen, were examined. The protein content in gluten was for 30 kg N, ww, similar for Taifun, Golia, and Gönen, but markedly lower in Monsun (231, 245, 247, 194 mg protein/g DM). The water deficit increased the protein content in the gluten of Golia and Gönen and was higher than that of Taifun and Monsun (297, 257, 249, 202 mg protein/g DM). Fertilization of 60 kg N, ww, did not result in any change in the protein content in gluten and differences between the cultivars were not detectable. The 15N protein in gluten was for 30 kg N, ww, markedly higher in Gönen (2.32 mg 15N protein/g DM), compared to Golia and Monsun (1.93, 1.50 mg 15N protein/g DM), and similar in Taifun (1.64 mg 15N protein/g DM). 15N fertilizer uptake into gluten was stimulated by water deficit for 30 and 60 kg N, leading to significantly increased 15N protein in Golia and Gönen, (2.38, 2.99, 4.34, 5.87 mg 15N protein/g DM). Fertilization of 60 kg N led to a proportional two-time increase in the 15N gluten protein of the four cultivars, in ww and wd plants. Assessed on the basis of 15N fertilizer allocation under wd conditions into gluten proteins, Golia and Gönen have a stronger sink activity, compared to Taifun and Monsun.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"333 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80574504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid Permafrost Thaw Removes Nitrogen Limitation and Rises the Potential for N2O Emissions 永久冻土的快速解冻消除了氮的限制,并增加了N2O排放的可能性
Nitrogen Pub Date : 2022-11-15 DOI: 10.3390/nitrogen3040040
Rica Wegner, Claudia Fiencke, C. Knoblauch, L. Sauerland, C. Beer
{"title":"Rapid Permafrost Thaw Removes Nitrogen Limitation and Rises the Potential for N2O Emissions","authors":"Rica Wegner, Claudia Fiencke, C. Knoblauch, L. Sauerland, C. Beer","doi":"10.3390/nitrogen3040040","DOIUrl":"https://doi.org/10.3390/nitrogen3040040","url":null,"abstract":"Ice–rich Pleistocene permafrost deposits (Yedoma) store large amounts of nitrogen (N) and are susceptible to rapid thaw. In this study, we assess whether eroding Yedoma deposits are potential sources of N and gaseous carbon (C) losses. Therefore, we determined aerobic net ammonification and nitrification, as well as anaerobic production of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) in laboratory incubations. Samples were collected from non-vegetated and revegetated slump floor (SF) and thaw mound (TM) soils of a retrogressive thaw slump in the Lena River Delta of Eastern Siberia. We found high nitrate concentrations (up to 110 µg N (g DW)−1) within the growing season, a faster transformation of organic N to nitrate, and high N2O production (up to 217 ng N2O-N (g DW)−1 day−1) in revegetated thaw mounds. The slump floor was low in nitrate and did not produce N2O under anaerobic conditions, but produced the most CO2 (up to 7 µg CO2-C (g DW)−1 day−1) and CH4 (up to 65 ng CH4-C (g DW)−1 day−1). Nitrate additions showed that denitrification was substrate limited in the slump floor. Nitrate limitation was rather caused by field conditions (moisture, pH) than by microbial functional limitation since nitrification rates were positive under laboratory conditions. Our results emphasize the relevance of considering landscape processes, geomorphology, and soil origin in order to identify hotspots of high N availability, as well as C and N losses. High N availability is likely to have an impact on carbon cycling, but to what extent needs further investigation.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"44 6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85826302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Secondary Immobilization as a Phase of N mineralization Dynamics of Soil Organic Inputs 土壤有机输入氮矿化动态的二次固定化阶段
Nitrogen Pub Date : 2022-11-01 DOI: 10.3390/nitrogen3040039
P. Dalias, A. Christou
{"title":"Secondary Immobilization as a Phase of N mineralization Dynamics of Soil Organic Inputs","authors":"P. Dalias, A. Christou","doi":"10.3390/nitrogen3040039","DOIUrl":"https://doi.org/10.3390/nitrogen3040039","url":null,"abstract":"Current understanding of nitrogen (N) mineralization from organic soil inputs considers three alternative processes: immediate net mineralization of N, net immobilization followed by net mineralization, or exclusively net immobilization. The three processes are compatible and linked with the C:N ratio rule. However, research evidence from a number of incubation studies incorporating processed materials like manures, composts, manure composts, or already decomposed plant residues suggest the presence of a second N immobilization phase. The mechanisms and conditions of this process, which is against the prevailing theory of soil N cycling, have not been ascertained, but they should most likely be attributed to impeded dead microbial biomass turnover. The transfer of mineral forms of N to the organic N pool may reasonably be explained by the chemical stabilization of nitrogenous compounds with secondary products of lignin degradation, which occurs late after incorporation of an organic input in soil. Secondary immobilization questions the reliability of the C:N ratio and most likely of other quality indices if proved to be real, even to some extent, while it may also have significant consequences on the management of soil organic additives applied as fertilizers.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79667969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential Nitrogen Contributions by Tropical Legume Summer Cover Crops in Mediterranean-Type Cropping Systems 地中海型种植系统中热带豆科夏季覆盖作物对氮的潜在贡献
Nitrogen Pub Date : 2022-10-21 DOI: 10.3390/nitrogen3040038
S. Parvin, J. Condon, Terry J. Rose
{"title":"Potential Nitrogen Contributions by Tropical Legume Summer Cover Crops in Mediterranean-Type Cropping Systems","authors":"S. Parvin, J. Condon, Terry J. Rose","doi":"10.3390/nitrogen3040038","DOIUrl":"https://doi.org/10.3390/nitrogen3040038","url":null,"abstract":"Legume cover crops in temperate cropping systems can fix substantial amounts of nitrogen (N) and reduce N fertiliser requirements for subsequent crops. However, little is known about potential biological N2 fixation by summer cover crop legumes in the short summer fallow in Mediterranean-type cropping systems. Six legume species (balansa clover, barrel medic, mung bean, sunn hemp, lablab and cowpea) were grown for 8–9 weeks in the field in semi-arid southern Australia during the summer fallow, and in a glasshouse experiment, to estimate N2 fixation using the 15N natural abundance method. Cowpea, sunn hemp and lablab produced 1.2–3.0 t ha−1 biomass in the field while balansa clover and barrel medic produced < 1.0 t ha−1. The percent of N derived from the atmosphere (%Ndfa) in the field ranged from 39% in barrel medic to 73% in sunn hemp, but only 15% (balansa clover) to 33% (sunn hemp) in the glasshouse experiment, likely due to higher soil mineral N availability in the glasshouse study. Biological N2 fixation of cowpea and sunn hemp in the field was 46–55 kg N ha−1, while N2 fixation in lablab and mung bean was lower (around 26 kg N ha−1). The N2 fixation in cowpea and sunn hemp of around 50 kg N ha−1 with supplementary irrigation in the field trial likely represents the upper limit of N contributions in the field in typically hot, dry summer conditions in Mediterranean-type climates. Given that any increase in summer cover crop biomass will have implications for water balances and subsequent cash crop growth, maximising N benefits of legume cover crops will rely on increasing the %Ndfa through improved rhizobium strains or inoculation technologies. This study provides the first known estimates of biological N2 fixation by legume cover crops in the summer fallow period in cropping systems in Mediterranean-type environments, providing a benchmark for further studies.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"5 2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83533839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信