Nitrogen最新文献

筛选
英文 中文
Evaluating APSIM-and-DSSAT-CERES-Maize Models under Rainfed Conditions Using Zambian Rainfed Maize Cultivars 以赞比亚旱作玉米品种为研究对象,对旱作条件下apsim和dssat - ceres -玉米模型的评价
Nitrogen Pub Date : 2021-09-23 DOI: 10.3390/nitrogen2040027
Charles Bwalya Chisanga, E. Phiri, V. Chinene
{"title":"Evaluating APSIM-and-DSSAT-CERES-Maize Models under Rainfed Conditions Using Zambian Rainfed Maize Cultivars","authors":"Charles Bwalya Chisanga, E. Phiri, V. Chinene","doi":"10.3390/nitrogen2040027","DOIUrl":"https://doi.org/10.3390/nitrogen2040027","url":null,"abstract":"Crop model calibration and validation is vital for establishing their credibility and ability in simulating crop growth and yield. A split–split plot design field experiment was carried out with sowing dates (SD1, SD2 and SD3); maize cultivars (ZMS606, PHB30G19 and PHB30B50) and nitrogen fertilizer rates (N1, N2 and N3) as the main plot, subplot and sub-subplot with three replicates, respectively. The experiment was carried out at Mount Makulu Central Research Station, Chilanga, Zambia in the 2016/2017 season. The study objective was to calibrate and validate APSIM-Maize and DSSAT-CERES-Maize models in simulating phenology, mLAI, soil water content, aboveground biomass and grain yield under rainfed and irrigated conditions. Days after planting to anthesis (APSIM-Maize, anthesis (DAP) RMSE = 1.91 days; DSSAT-CERES-Maize, anthesis (DAP) RMSE = 2.89 days) and maturity (APSIM-Maize, maturity (DAP) RMSE = 3.35 days; DSSAT-CERES-Maize, maturity (DAP) RMSE = 3.13 days) were adequately simulated, with RMSEn being <5%. The grain yield RMSE was 1.38 t ha−1 (APSIM-Maize) and 0.84 t ha−1 (DSSAT-CERES-Maize). The APSIM- and-DSSAT-CERES-Maize models accurately simulated the grain yield, grain number m−2, soil water content (soil layers 1–8, RMSEn ≤ 20%), biomass and grain yield, with RMSEn ≤ 30% under rainfed condition. Model validation showed acceptable performances under the irrigated condition. The models can be used in identifying management options provided climate and soil physiochemical properties are available.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"61 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84698403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Effect of Organic and Inorganic Sources of Nitrogen on Growth, Yield, and Quality of Beetroot Varieties in Nepal 有机和无机氮源对尼泊尔甜菜根品种生长、产量和品质的影响
Nitrogen Pub Date : 2021-09-02 DOI: 10.3390/nitrogen2030026
Arati Sapkota, M. Sharma, H. N. Giri, B. Shrestha, D. Panday
{"title":"Effect of Organic and Inorganic Sources of Nitrogen on Growth, Yield, and Quality of Beetroot Varieties in Nepal","authors":"Arati Sapkota, M. Sharma, H. N. Giri, B. Shrestha, D. Panday","doi":"10.3390/nitrogen2030026","DOIUrl":"https://doi.org/10.3390/nitrogen2030026","url":null,"abstract":"Economic use of organic and inorganic fertilizers following their availability is necessary for livestock-based Nepalese farming systems. However, how best to integrate these fertilizers in an appropriate manner is not yet clear. Thus, this study was conducted in the horticulture farm of the Agriculture and Forestry University (AFU), Rampur, Chitwan, Nepal from November 2018 to February 2019 to evaluate the effect of organic and inorganic sources of nitrogen (N) on growth, yield, and quality of beetroot (Beta vulgaris L.) varieties. The experiment was laid out in a two factorial randomized complete block design with four replications consisting of two beetroot varieties, i.e., Madhur and Ruby Red, and five N source combinations, i.e., N1: 100% poultry manure (PM), N2: 50% PM + 50% urea, N3: 100% farmyard manure (FYM), N4: 50% FYM + 50% urea, and N5: 100% urea (120:80:40 kg NPK ha−1). Results of this study indicated a significant impact of N sources and varieties on the assessed parameters. During harvest, a significantly higher plant height (41.84 cm), number of leaves per plant (14.68), leaf length (34.56 cm), leaf width (11.38 cm), and beetroot diameter (72.15 mm) were observed in the N2 treatment. Likewise, higher economic (49.78 t ha−1) and biological yields (78.69 t ha−1) were also recorded in the N2 compared to other N sources. Out of the two varieties, the Madhur variety was significantly better in most growth and yield parameters. Similarly, the Madhur variety showed a significantly higher economic (44.49 t ha−1) and biological yields (69.79 t ha−1) compared to the Ruby Red variety. However, the physiological weight loss was higher in the Ruby Red variety. Therefore, the current study suggests that an integration of poultry manure along with the combination of N fertilizer and the Madhur variety is the best combination for quality beetroot production in the Terai region of Nepal.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83117249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Optimizing N Fertilization for Increasing Yield and Profits of Rainfed Maize Grown under Sandy Loam Soil 优化氮肥对砂壤土下旱作玉米增产增收的影响
Nitrogen Pub Date : 2021-09-01 DOI: 10.3390/nitrogen2030025
K. Dhakal, B. R. Baral, K. R. Pokhrel, N. Pandit, Y. K. Gaihre, S. Vista
{"title":"Optimizing N Fertilization for Increasing Yield and Profits of Rainfed Maize Grown under Sandy Loam Soil","authors":"K. Dhakal, B. R. Baral, K. R. Pokhrel, N. Pandit, Y. K. Gaihre, S. Vista","doi":"10.3390/nitrogen2030025","DOIUrl":"https://doi.org/10.3390/nitrogen2030025","url":null,"abstract":"The optimum dose of fertilizers for crops varies with soil, agro-ecology, and crop management practices. Optimizing application dose is critical to reduce nutrient loss to the environment and increase nitrogen use efficiency (NUE), crop yields, and economic return to farmers. An experiment was conducted to determine the optimum N dose for increasing maize (Zea mays L. cv, Manakamana-3) yield, NUE, and farm profits under rainfed conditions. Five levels of N (0, 60, 120, 180, and 240 kg ha−1), and a non-fertilized treatment were tested in a randomized complete block design with three replications. Effects of each treatment on yield and yield attributing traits, plant lodging and Sterility (plants with no cob or grain formation), NUE, and stay green trait of maize were recorded. Application of N above 120 kg ha−1 (N120) did not have any significant effects on yield and yield components. Nitrogen, at N120 and above, produced highly fertile plants (though sterility slightly increased at N180 and N240), higher N uptake, and lower dead leaf area (18–27%). N120 produced the highest agronomic; yield increase per unit of N application (AEN—26.89 kg grain kg−1 N) and physiological efficiency of N (PEN—42.67 kg grain kg−1 N uptake), and net benefit (USD 500.43). Considering agronomic, economic, and NUE factors, an N dose of 120 kg ha−1 was found optimum for the cultivation of rainfed maize (Manakamana-3) under sandy loam soil.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87478538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Effects of Different Organic Soil Amendments on Nitrogen Nutrition and Yield of Organic Greenhouse Tomato Crop 不同土壤改良剂对有机温室番茄氮素营养及产量的影响
Nitrogen Pub Date : 2021-08-26 DOI: 10.3390/nitrogen2030024
A. Gatsios, G. Ntatsi, Dionisios Yfantopoulos, P. Baltzoi, I. Karapanos, I. Tsirogiannis, G. Patakioutas, D. Savvas
{"title":"Effects of Different Organic Soil Amendments on Nitrogen Nutrition and Yield of Organic Greenhouse Tomato Crop","authors":"A. Gatsios, G. Ntatsi, Dionisios Yfantopoulos, P. Baltzoi, I. Karapanos, I. Tsirogiannis, G. Patakioutas, D. Savvas","doi":"10.3390/nitrogen2030024","DOIUrl":"https://doi.org/10.3390/nitrogen2030024","url":null,"abstract":"Manure is a common source of nitrogen (N) in organic farming. However, manure is not always easily available, while the maximum N amount added as animal manure in organic agriculture is restricted by EU regulations. The present study was designed to test whether green manuring with a warm-season legume and intercropping with a cold-season legume can substitute farm-yard manure or compost as N sources in organic greenhouse tomato crops. To test this hypothesis, a winter-spring (WS) tomato crop was installed in February following the incorporation of crop residues of an autumn-winter (AW) tomato crop intercropped with faba bean, which had been fertilized with cowpea residues as green manure. This treatment, henceforth termed legume treatment (LT), was compared with the use of compost or manure as an N fertilization source in both tomato crops. In addition, a combination of compost and LT was also used as a fourth treatment. The results showed that green manuring with legumes and particularly cowpea can contribute a significant amount of N to the following organic tomato crop, through the biological fixation process. Nevertheless, legumes as green manure, or compost, or their combination cannot efficiently replace farmyard manure as an N fertilization source. Compost exhibited a slow mineralization course.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77548107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Efficacy of Peat and Liquid Inoculant Formulations of Bradyrhizobium japonicum Strain WB74 on Growth, Yield and Nitrogen Concentration of Soybean (Glycine max L.) 泥炭和液体接种剂对缓生日本根瘤菌WB74生长、产量和氮素浓度的影响
Nitrogen Pub Date : 2021-07-27 DOI: 10.3390/nitrogen2030023
Auges Gatabazi, B. Vorster, Mireille Asanzi Mvondo-She, E. Mangwende, Robert Mangani, A. Hassen
{"title":"Efficacy of Peat and Liquid Inoculant Formulations of Bradyrhizobium japonicum Strain WB74 on Growth, Yield and Nitrogen Concentration of Soybean (Glycine max L.)","authors":"Auges Gatabazi, B. Vorster, Mireille Asanzi Mvondo-She, E. Mangwende, Robert Mangani, A. Hassen","doi":"10.3390/nitrogen2030023","DOIUrl":"https://doi.org/10.3390/nitrogen2030023","url":null,"abstract":"South African soils generally lack native Bradyrhizobium strains that nodulate and fix atmospheric nitrogen (N2) in soybeans (Glycine max L.). It is therefore very important to inoculate soybeans with products that contain effective Bradyrhizobium strains as active ingredients. In this study, a field experiment was conducted on two bioclimatic zones in South Africa during the 2019/2020 season to assess the effect of Bradyrhizobium japonicum strain WB74 inoculant formulation on nitrogen fixation, growth and yield improvement in soybeans. The first bioclimatic zone was characterized by a sandy clay loam soil, whereas the second bioclimatic zone has a sandy loam soil. The results showed that inoculation of soybeans with both peat and liquid formulations of Bradyrhizobium japonicum WB74 increased nitrogen uptake, which resulted in yield increase. The amount of N fixed was measured as 15N isotopes and increased with all treatments compared to the uninoculated control in both liquid and peat inoculant formulations. In bioclimatic zone A, slightly better results were obtained using the liquid formulation (1.79 t ha−1 for liquid compared to 1.75 t ha−1 for peat treatments), while peat formulations performed better in bioclimatic zone B (1.75 t ha−1 for peat compared to 1.71 t ha−1 for liquid treatments). In both areas higher yields were obtained with the formulations used in this study compared to the registered standards (treatment T3). The findings in this study provide vital information in the development and application of formulated microbial inoculants for sustainable agriculture in South Africa.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83576514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Poultry Manure Induced Garden Eggs Yield and Soil Fertility in Tropical and Semi-Arid Sandy-Loam Soils 家禽粪便对热带和半干旱沙壤土花园鸡蛋产量和土壤肥力的影响
Nitrogen Pub Date : 2021-07-13 DOI: 10.3390/NITROGEN2030022
I. K. Mpanga, E. Adjei, H. Dapaah, K. G. Santo
{"title":"Poultry Manure Induced Garden Eggs Yield and Soil Fertility in Tropical and Semi-Arid Sandy-Loam Soils","authors":"I. K. Mpanga, E. Adjei, H. Dapaah, K. G. Santo","doi":"10.3390/NITROGEN2030022","DOIUrl":"https://doi.org/10.3390/NITROGEN2030022","url":null,"abstract":"Synthetic nitrogen fertilizer use comes with unsustainable financial and environmental costs, making it not attractive to small-scale and organic farmers. Poultry manure (PM) when available is a primary fertilizer source for small-scale and organic farmers but there is still limited research on its effects of specific crops and soil fertility under specific practices. The study investigated PM effects on garden egg in three seasons in Ghana and PM effects soil fertility in sandy-loam soils of Arizona after three years under flood irrigation and no-till. The PM application improved garden egg growth (dry matter by 73%) and increased yield by 66% in slightly acidic sandy-loam tropical soils, which could be related to soil mineral improvement. In the semi-arid soil, three years PM application increased cation exchange capacity (41%), P (471%), K (18%), S (244%), Ca (45%), Mg (31%), Zn (5%) and Mn (19%) with reduction in nitrate (−26%), Fe (−38%) and Cu (−11%). The reduction in the nitrate and Fe in the semi-arid Arizona cropland could be associated to flood irrigation and high soil pH, respectively. To gain the full potential from PM applications, best management practice is recommended to reduce nitrate leaching.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83652601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Selecting Biomonitors of Atmospheric Nitrogen Deposition: Guidelines for Practitioners and Decision Makers 选择大气氮沉降生物监测仪:从业者和决策者指南
Nitrogen Pub Date : 2021-07-12 DOI: 10.3390/NITROGEN2030021
D. Martínez, E. A. Díaz-Álvarez, E. de la Barrera
{"title":"Selecting Biomonitors of Atmospheric Nitrogen Deposition: Guidelines for Practitioners and Decision Makers","authors":"D. Martínez, E. A. Díaz-Álvarez, E. de la Barrera","doi":"10.3390/NITROGEN2030021","DOIUrl":"https://doi.org/10.3390/NITROGEN2030021","url":null,"abstract":"Environmental pollution is a major threat to public health and is the cause of important economic losses worldwide. Atmospheric nitrogen deposition is one of the most significant components of environmental pollution, which, in addition to being a health risk, is one of the leading drivers of global biodiversity loss. However, monitoring pollution is not possible in many regions of the world because the instrumentation, deployment, operation, and maintenance of automated systems is onerous. An affordable alternative is the use of biomonitors, naturally occurring or transplanted organisms that respond to environmental pollution with a consistent and measurable ecophysiological response. This policy brief advocates for the use of biomonitors of atmospheric nitrogen deposition. Descriptions of the biological and monitoring particularities of commonly utilized biomonitor lichens, bryophytes, vascular epiphytes, herbs, and woody plants, are followed by a discussion of the principal ecophysiological parameters that have been shown to respond to the different nitrogen emissions and their rate of deposition.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87685345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Distribution of Dissolved Nitrogen Compounds in the Water Column of a Meromictic Subarctic Lake 亚北极分生湖泊水柱中溶解氮化合物的分布
Nitrogen Pub Date : 2021-07-01 DOI: 10.20944/PREPRINTS202107.0006.V1
Taisiya Ya. Vorobyeva, A. Chupakova, A. Chupakov, S. Zabelina, O. Moreva, O. Pokrovsky
{"title":"Distribution of Dissolved Nitrogen Compounds in the Water Column of a Meromictic Subarctic Lake","authors":"Taisiya Ya. Vorobyeva, A. Chupakova, A. Chupakov, S. Zabelina, O. Moreva, O. Pokrovsky","doi":"10.20944/PREPRINTS202107.0006.V1","DOIUrl":"https://doi.org/10.20944/PREPRINTS202107.0006.V1","url":null,"abstract":"In order to better understand the biogeochemical cycle of nitrogen in meromictic lakes, which can serve as a model for past aquatic environments, we measured dissolved concentrations of nitrate, nitrite, ammonium and organic nitrogen in deep (39 m maximal depth) subarctic Lake Svetloe (NW Russia). The lake is a rare type of freshwater meromictic water boy with high concentrations of methane, ferrous iron, manganese and low concentrations of sulfates and sulfides in the monimolimnion. In the oligotrophic mixolimnion, the concentration of mineral forms of nitrogen decreased in summer compared to winter, likely due to phytoplankton bloom. The decomposition of the bulk of organic matter occurs under microaerophilic/anaerobic conditions of the chemocline and accompanied by the accumulation of nitrogen in the form of N-NH4 in the monimonimlion. We revealed a strong relationship between methane and nitrogen cycles in the chemocline and monimolimnion horizons. The nitrate concentrations in Lake Svetloe varied in the range from 9 to 13 μM throughout the water column. This fact is rare for meromictic lakes, where nitrate concentrations up to 13 µM are found in the monimolimnion zone down to the bottom layers. We hypothesize, in accord with available data for other stratified lakes, that under conditions of high concentrations of manganese and ammonium at the boundary of redox conditions and below, anaerobic nitrification with the formation of nitrates occurs. Overall, most of organic matter in Lake Svetloe undergoes biodegradation essentially under microaerophilic/anaerobic conditions of the chemocline and the monimolimnion. Consequently, the manifestation of the biogeochemical nitrogen cycle is expressed in these horizons in the most vivid and complex relationship with other cycles of elements.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"105 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79280764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Feasibility Study of Using Absolute SPAD Values for Standardized Evaluation of Corn Nitrogen Status 应用SPAD绝对值标准化评价玉米氮素状况的可行性研究
Nitrogen Pub Date : 2021-06-28 DOI: 10.3390/nitrogen2030020
Abdelaziz Rhezali, A. Aissaoui
{"title":"Feasibility Study of Using Absolute SPAD Values for Standardized Evaluation of Corn Nitrogen Status","authors":"Abdelaziz Rhezali, A. Aissaoui","doi":"10.3390/nitrogen2030020","DOIUrl":"https://doi.org/10.3390/nitrogen2030020","url":null,"abstract":"Nitrogen fertilizer recommendations for corn (Zea mays L.) should ensure high yields using adequate N doses. Soil–plant analysis development (SPAD) meter technology using absolute SPAD values, might be more reliable than relative SPAD values in helping corn producers making timely decisions about N applications. This study aimed to develop a relationship between absolute SPAD values and leaf N concentration, and to determine optimal leaf N concentrations at early corn growth stages (V6, V8, V10, and V12). Three experiments were conducted during two summer seasons (2014 and 2015) using six N treatments applied at early corn growth stages. In parallel, two experiments were carried out in a high residual N environment to establish the optimum corn leaf N concentration. Results showed a significant linear relationship between corn leaf N concentrations and absolute SPAD values (R2 = 0.80, p < 0.05). The mean optimum corn leaf N concentration decreased over corn growth stages. It is of great importance to make the absolute SPAD method accessible for farmers, but more research is required to perform standardized reading of absolute SPAD values data.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75910863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Comparison of Alum and Sulfuric Acid to Retain and Increase the Ammonium Content of Digestate Solids during Thermal Drying 明矾和硫酸在热干燥过程中保留和增加消化固体铵含量的比较
Nitrogen Pub Date : 2021-06-10 DOI: 10.3390/NITROGEN2020019
Jingna Liu, L. S. Jensen, D. Müller-Stöver
{"title":"Comparison of Alum and Sulfuric Acid to Retain and Increase the Ammonium Content of Digestate Solids during Thermal Drying","authors":"Jingna Liu, L. S. Jensen, D. Müller-Stöver","doi":"10.3390/NITROGEN2020019","DOIUrl":"https://doi.org/10.3390/NITROGEN2020019","url":null,"abstract":"Aluminum sulphate (alum, Al2(SO4)3·nH2O) has successfully been used to reduce ammonia loss from poultry litter, cattle feedlots and manure composting, but has not yet been utilized in the thermal drying process of digestate solids. The objectives of the present study were to evaluate the effects of alum addition on ammonium nitrogen (NH4+-N) content and phosphorus (P) solubility in dried digestate solids in comparison to the addition of concentrated sulfuric acid (H2SO4). Manure-based (MDS) and sewage sludge-based (SDS) digestate solids were chosen to conduct a drying experiment at four pH levels (original pH, 8.0, 7.5 and 6.5) and using two acidifying agents (alum, concentrated H2SO4). Alum addition increased the final NH4+-N content significantly from 1.4 mg g−1 in the non-acidified control up to 18 mg g−1 and 10.8 mg g−1 in dried MDS and SDS, respectively, which were higher levels than obtained with the addition of concentrated H2SO4. Moreover, alum considerably lowered the water extractable phosphorus (WEP) in raw and dried SDS by 37–83% and 48–72%, respectively, compared with the non-treated control. In contrast, concentrated H2SO4 notably increased WEP in raw and dried MDS by 18–103% and 29–225%, respectively. The comparison between the two acidifying agents indicated that alum had the potential to be an efficient and easy-handling alternative to concentrated sulfuric acid, resulting in higher NH4+-N content and lower P solubility.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"145 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72964328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信