Nippon Laser Igakkaishi最新文献

筛选
英文 中文
Dye Laser Treatment for Capillary Malformations (Port-wine Stains) of Infants 染料激光治疗婴儿毛细血管畸形(葡萄酒斑)
Nippon Laser Igakkaishi Pub Date : 2021-04-02 DOI: 10.2530/JSLSM.JSLSM-42_0004
Tadashi Nomura, Takeo Osaki, Sayuri Osawa, Reiko Takeda, Y. Hasegawa, S. Sakakibara, K. Hashikawa, H. Terashi
{"title":"Dye Laser Treatment for Capillary Malformations (Port-wine Stains) of Infants","authors":"Tadashi Nomura, Takeo Osaki, Sayuri Osawa, Reiko Takeda, Y. Hasegawa, S. Sakakibara, K. Hashikawa, H. Terashi","doi":"10.2530/JSLSM.JSLSM-42_0004","DOIUrl":"https://doi.org/10.2530/JSLSM.JSLSM-42_0004","url":null,"abstract":"About 3 decades have passed since the pulsed-dye laser for the treatment of capillary malformation (port-wine stain) has spread. At present, the long-pulsed pulse dye laser has become the first-choice treatment in Japan. Devices with less purpura formation have been available in recent years. Early irradiation for infants tends to be recommended, but redarkening is still a serious problem. The development of the adjunctive drug or therapy which raise the effect of the dye laser is expected","PeriodicalId":19350,"journal":{"name":"Nippon Laser Igakkaishi","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81768168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water-Soluble Polymer Bearing Photosensitizing Moieties and Their Photodynamic Action 水溶性光敏聚合物及其光动力作用
Nippon Laser Igakkaishi Pub Date : 2021-01-15 DOI: 10.2530/jslsm.jslsm-41_0011
M. Obata
{"title":"Water-Soluble Polymer Bearing Photosensitizing Moieties and Their Photodynamic Action","authors":"M. Obata","doi":"10.2530/jslsm.jslsm-41_0011","DOIUrl":"https://doi.org/10.2530/jslsm.jslsm-41_0011","url":null,"abstract":"Hydrophobic and rigid molecular structure is required for efficient generation of reactive oxygen species upon photoirradiation with longer wavelength region. Lacks in water-solubility of the photosensitizers frequently obstacle in practical use. In this article, we introduce our attempts to solubilize by conjugation of photosensitizer with water-soluble polymer.","PeriodicalId":19350,"journal":{"name":"Nippon Laser Igakkaishi","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91539102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Basic Research and Preclinical Evaluation of Photodynamic Therapy (PDT) for Malignant Brain Tumors to Improve Further Clinical Effectiveness 光动力疗法(PDT)治疗恶性脑肿瘤的基础研究及临床前评价以进一步提高临床疗效
Nippon Laser Igakkaishi Pub Date : 2021-01-15 DOI: 10.2530/jslsm.jslsm-41_0018
E. Ishikawa, H. Kohzuki, T. Tsurubuchi, A. Matsumura
{"title":"Basic Research and Preclinical Evaluation of Photodynamic Therapy (PDT) for Malignant Brain Tumors to Improve Further Clinical Effectiveness","authors":"E. Ishikawa, H. Kohzuki, T. Tsurubuchi, A. Matsumura","doi":"10.2530/jslsm.jslsm-41_0018","DOIUrl":"https://doi.org/10.2530/jslsm.jslsm-41_0018","url":null,"abstract":"The main tumor killing mechanism of photodynamic therapy (PDT) is apoptosis and necrosis of tumor cells after generation of singlet oxygen species and this effect is mainly dependent on the depth of laser irradiation penetration. PDT using talaporfin sodium as a photosensitizer has already been applied clinically for high-grade glioma treatment and improvement of its further therapeutic effect is highly desired. Recently, basic research and preclinical evaluation of PDT to improve its effect while minimizing surrounding normal tissue damage has been performed, since simply raising laser power to improve PDT effect is not realistic in view of damage to surrounding normal tissue. The main countermeasure might be the increase in accumulation of already known photosensitizers in tumor tissue. However, the search for mechanisms of tumor-specific accumulation of the photosensitizers and their interactions with key molecules of tumor cells is still underway. Using next generation photosensitizers and combination with immunotherapy, as well as increasing the tumor accumulation of existing photosensitizers, are important issues regarding basic research on and preclinical evaluation of PDT, and application of such new findings will result in the increase of the clinical role of PDT.","PeriodicalId":19350,"journal":{"name":"Nippon Laser Igakkaishi","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90922689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Activatable Photosensitizer for Photodynamic Therapy of Cancer 癌症光动力治疗中可活化光敏剂的研制
Nippon Laser Igakkaishi Pub Date : 2021-01-15 DOI: 10.2530/jslsm.jslsm-41_0033
Hiroaki Horiuchi
{"title":"Development of Activatable Photosensitizer for Photodynamic Therapy of Cancer","authors":"Hiroaki Horiuchi","doi":"10.2530/jslsm.jslsm-41_0033","DOIUrl":"https://doi.org/10.2530/jslsm.jslsm-41_0033","url":null,"abstract":"Photodynamic therapy is expected to be a minimally invasive treatment for cancer. Activatable photosensitizers have attracted considerable attention as one of the strategies for improving the minimally invasive properties. The activatable photosensitizer is in the photo-inactive (OFF) state in normal tissues; however, it is in the photoactive (ON) state in the tumor tissue. In this review, low pH- and sono-activatable photosensitizers are introduced.","PeriodicalId":19350,"journal":{"name":"Nippon Laser Igakkaishi","volume":"329 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80466907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Porphyrin Derivatives for Theranostics 治疗用卟啉衍生物的研究进展
Nippon Laser Igakkaishi Pub Date : 2021-01-15 DOI: 10.2530/jslsm.jslsm-41_0022
S. Hirohara
{"title":"Development of Porphyrin Derivatives for Theranostics","authors":"S. Hirohara","doi":"10.2530/jslsm.jslsm-41_0022","DOIUrl":"https://doi.org/10.2530/jslsm.jslsm-41_0022","url":null,"abstract":"Theranostics combining cancer diagnosis and cancer treatment is attracting attention as a field of cancer medicine. Porphyrin derivatives are used as photosensitizing molecules in cancer treatment (photodynamic therapy, PDT) and cancer diagnosis (photodynamic diagnosis, PDD). In the previous report, we developed glycosylated 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (TFPP) zinc (Zn and 62 Zn) complexes as a PDT photosensitizer with positron emission tomography (PET)-tracking functionality. These complexes displayed a high cellular uptake amount, efficient photocytotoxicity, and promising PDT effect. However, they have the disadvantage of slow tumor accumulation. In this study, we synthesized TFPP zinc complexes (Zn-P) bearing two kinds of substituent groups, namely a glucose (Glc) group to improve tissue selectivity and a 2-hydroxyethanethiol (ME) group to enhance cell penetration for theranostics. We show that Zn-P(Glc) 2 (ME) 2 increased the efficiency of singlet oxygen generation under the standard condition of this photocytotoxicity test. The photocytotoxicity of Zn-P(Glc) 2 (ME) 2 was evaluated in HeLa cells, RGK-1 gastric carcinoma mucosal cells, and two human glioblastoma cells (U87 and T98G) at coincubation for 8 hours. Zn-P(Glc) 2 (ME) 2 was found to exhibit photocytotoxicity in a short incubation time (8 hours).","PeriodicalId":19350,"journal":{"name":"Nippon Laser Igakkaishi","volume":"155 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82508420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photodynamic Therapy for Malignant Brain Tumors: Past, Present and Future 恶性脑肿瘤的光动力疗法:过去、现在和未来
Nippon Laser Igakkaishi Pub Date : 2021-01-15 DOI: 10.2530/jslsm.jslsm-41_0012
J. Akimoto
{"title":"Photodynamic Therapy for Malignant Brain Tumors: Past, Present and Future","authors":"J. Akimoto","doi":"10.2530/jslsm.jslsm-41_0012","DOIUrl":"https://doi.org/10.2530/jslsm.jslsm-41_0012","url":null,"abstract":"Photodynamic therapy (PDT) was approved to be covered by health insurance in Japan on 2013, as an additional intraoperative local treatment for invasive tumor cells after maximum safe resection of the primary malignant brain tumors. This review provides an overview of the clinical trials conducted over the last 40 years, illustrating how PDT is applied in the clinical practice in the world. Furthermore, examples from ongoing clinical trials are presented, and the author proposed the future perspectives of PDT for malignant brain tumors.","PeriodicalId":19350,"journal":{"name":"Nippon Laser Igakkaishi","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82213943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benefits and Problems of Photodynamic Diagnosis in Brain Tumor Treatment 光动力学诊断在脑肿瘤治疗中的益处和问题
Nippon Laser Igakkaishi Pub Date : 2021-01-15 DOI: 10.2530/jslsm.jslsm-41_0036
M. Nitta, Y. Muragaki
{"title":"Benefits and Problems of Photodynamic Diagnosis in Brain Tumor Treatment","authors":"M. Nitta, Y. Muragaki","doi":"10.2530/jslsm.jslsm-41_0036","DOIUrl":"https://doi.org/10.2530/jslsm.jslsm-41_0036","url":null,"abstract":"Maximum and safe removal of malignant gliomas is no easy, and various modalities are used, including photodynamic diagnosis (PDD) using 5-aminolevulinic acid (5-ALA). Fluorescence guided surgery (Fluorescence Guided Surgery: FGS) using 5-ALA is highly useful for malignant gliomas, because it selectively accumulates in the tumor cells and the presence of the tumor cells can be demonstrated in a very simple and real-time manner by the assessment of emitting fluorescence of its metabolite Protoporphyrin IX (PpIX). Recently, the mechanism of PpIX accumulation has been elucidated, and in the future, research to increase the effects of PDD and PDT by increasing the efficiency of accumulation is expected. On the other hand, 5-ALA PDD is not useful in lower-grade gliomas due to problems including false positives and false negatives, and its use requires sufficient knowledge and experience. In order to overcome these problems, PpIX fluorescence quantification using spectral analysis have been developed, and further development of these techniques is expected. Recently, it was shown that PDD is possible using talaporfin sodium, which has been approved as a photodynamic therapy (PDT) treatment in Japan, and more effective surgical treatment will be developed by combining PDD and PDT using talaporfin sodium in the future.","PeriodicalId":19350,"journal":{"name":"Nippon Laser Igakkaishi","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75413601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the Excitation Wavelength for Extension of Diagnostic Depth in 5-aminolevulinic Acid-based Photodynamic Diagnosis of Bladder Cancer 5-氨基乙酰丙酸光动力学诊断膀胱癌中激发波长扩展诊断深度的研究
Nippon Laser Igakkaishi Pub Date : 2021-01-15 DOI: 10.2530/jslsm.jslsm-41_0034
Hiroki Takishima, Daisuke Ihara, T. Nishimura, H. Hazama, K. Awazu
{"title":"Investigation of the Excitation Wavelength for Extension of Diagnostic Depth in 5-aminolevulinic Acid-based Photodynamic Diagnosis of Bladder Cancer","authors":"Hiroki Takishima, Daisuke Ihara, T. Nishimura, H. Hazama, K. Awazu","doi":"10.2530/jslsm.jslsm-41_0034","DOIUrl":"https://doi.org/10.2530/jslsm.jslsm-41_0034","url":null,"abstract":"Extension of diagnostic depth in 5-aminolevulinic acid-based photodynamic diagnosis (ALA-PDD) for bladder cancer was investigated by selecting the wavelength of the excitation light. Numerical calculation based on the light attenuation in bladder tissue and the absorption coefficient of PpIX showed that the fluorescence intensity with the green excitation light of 505 nm wavelength was highest for a tumor located at a depth of 0.9 mm or deeper. The diagnostic depth in an extracted porcine bladder tissue using an excitation wavelength of 505 nm was compared with that using the blue-violet excitation light of 405 nm wavelength that is currently used in PDD. The fluorescence intensity at the excitation wavelength of 505 nm was higher for a tumor located at a depth of 0.8 mm or deeper. These results indicate that an extension of the diagnostic depth is achieved with the excitation wavelength of 505 nm.","PeriodicalId":19350,"journal":{"name":"Nippon Laser Igakkaishi","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81910030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The 42nd Annual Meeting of Japan Society for Laser Surgery and Medicine—Laser Week in Tokyo II— 第42届日本激光外科与医学学会年会-东京激光周
Nippon Laser Igakkaishi Pub Date : 2021-01-15 DOI: 10.2530/jslsm.jslsm-41_0040
{"title":"The 42nd Annual Meeting of Japan Society for Laser Surgery and Medicine—Laser Week in Tokyo II—","authors":"","doi":"10.2530/jslsm.jslsm-41_0040","DOIUrl":"https://doi.org/10.2530/jslsm.jslsm-41_0040","url":null,"abstract":"","PeriodicalId":19350,"journal":{"name":"Nippon Laser Igakkaishi","volume":"63 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89318571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
第32回日本レーザー治療学会開催のご案内 第32届日本激光治疗学会召开指南
Nippon Laser Igakkaishi Pub Date : 2021-01-15 DOI: 10.2530/jslsm.jslsm-41_0041
{"title":"第32回日本レーザー治療学会開催のご案内","authors":"","doi":"10.2530/jslsm.jslsm-41_0041","DOIUrl":"https://doi.org/10.2530/jslsm.jslsm-41_0041","url":null,"abstract":"","PeriodicalId":19350,"journal":{"name":"Nippon Laser Igakkaishi","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90875942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信