npj Quantum Materials最新文献

筛选
英文 中文
Interlayer interaction and Davydov splitting in antiferromagnetic few-layer NiPS3 反铁磁性NiPS3的层间相互作用和Davydov分裂
IF 5.7 1区 物理与天体物理
npj Quantum Materials Pub Date : 2025-06-20 DOI: 10.1038/s41535-025-00788-x
Manh Hong Nguyen, Giung Park, Je-Geun Park, Hyeonsik Cheong
{"title":"Interlayer interaction and Davydov splitting in antiferromagnetic few-layer NiPS3","authors":"Manh Hong Nguyen, Giung Park, Je-Geun Park, Hyeonsik Cheong","doi":"10.1038/s41535-025-00788-x","DOIUrl":"https://doi.org/10.1038/s41535-025-00788-x","url":null,"abstract":"<p>Interlayer interactions in few-layer NiPS<sub>3</sub> were investigated by analyzing low-frequency interlayer vibration modes and Davydov splitting of an intralayer, A<sub>1g</sub> vibration mode at ~255 cm<sup>–1</sup> by Raman spectroscopy as a function of temperature. The interlayer force constants were estimated from the low-frequency Raman spectra by using the linear chain model. The out-of-plane direction interlayer force constant could also be estimated separately from the Davydov splitting, which agrees well with the linear chain model analysis. The dependence of the low-frequency shear and breathing modes and the Davydov splitting on the number of layers provide a unique, reliable tool for determining the number of layers.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"26 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144335026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing loop currents and collective modes of charge density waves in Kagome materials with NV centers 具有NV中心的Kagome材料中探测环路电流和电荷密度波的集体模式
IF 5.7 1区 物理与天体物理
npj Quantum Materials Pub Date : 2025-06-20 DOI: 10.1038/s41535-025-00780-5
Ying-Ming Xie, Naoto Nagaosa
{"title":"Probing loop currents and collective modes of charge density waves in Kagome materials with NV centers","authors":"Ying-Ming Xie, Naoto Nagaosa","doi":"10.1038/s41535-025-00780-5","DOIUrl":"https://doi.org/10.1038/s41535-025-00780-5","url":null,"abstract":"<p>Recently, the unconventional charge density wave (CDW) order with loop currents has attracted considerable attention in the Kagome material family AV<sub>3</sub>Sb<sub>5</sub> (A = K, Rb, Cs). However, experimental signatures of loop current order remain elusive. In this work, based on the mean-field free energy, we analyze the collective modes of unconventional CDW order in a Kagome lattice model. Furthermore, we point out that phase modes in the imaginary CDW (iCDW) order with loop current orders result in time-dependent stray fields. We thus propose using nitrogen-vacancy (NV) centers to detect these time-dependent stray fields, providing a potential experimental approach to identifying loop current order.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"45 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144329016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical properties, plasmons, and orbital Skyrme textures in twisted TMDs 扭曲tmd中的光学特性、等离子体和轨道Skyrme织构
IF 5.7 1区 物理与天体物理
npj Quantum Materials Pub Date : 2025-06-18 DOI: 10.1038/s41535-025-00771-6
Lorenzo Cavicchi, Koen J. A. Reijnders, Mikhail I. Katsnelson, Marco Polini
{"title":"Optical properties, plasmons, and orbital Skyrme textures in twisted TMDs","authors":"Lorenzo Cavicchi, Koen J. A. Reijnders, Mikhail I. Katsnelson, Marco Polini","doi":"10.1038/s41535-025-00771-6","DOIUrl":"https://doi.org/10.1038/s41535-025-00771-6","url":null,"abstract":"<p>In the long-wavelength limit, Bloch-band Berry curvature has no effect on the bulk plasmons of a two-dimensional electron system. In this Letter, we show instead that bulk plasmons are a probe of real-space topology. In particular, we focus on orbital Skyrme textures in twisted transition metal dichalcogenides, presenting detailed semiclassical and quantum mechanical calculations of the optical conductivity and plasmon spectrum of twisted MoTe<sub>2</sub>.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"44 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144319822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetry-mediated quantum coherence of W5+ spins in an oxygen-deficient double perovskite 缺氧双钙钛矿中W5+自旋的对称介导量子相干性
IF 5.7 1区 物理与天体物理
npj Quantum Materials Pub Date : 2025-06-18 DOI: 10.1038/s41535-025-00782-3
Shannon Bernier, Mekhola Sinha, Tyler J. Pearson, Peter V. Sushko, Paul H. Oyala, Maxime A. Siegler, W. Adam Phelan, Abby N. Neill, Danna E. Freedman, Tyrel M. McQueen
{"title":"Symmetry-mediated quantum coherence of W5+ spins in an oxygen-deficient double perovskite","authors":"Shannon Bernier, Mekhola Sinha, Tyler J. Pearson, Peter V. Sushko, Paul H. Oyala, Maxime A. Siegler, W. Adam Phelan, Abby N. Neill, Danna E. Freedman, Tyrel M. McQueen","doi":"10.1038/s41535-025-00782-3","DOIUrl":"https://doi.org/10.1038/s41535-025-00782-3","url":null,"abstract":"<p>Elucidating the factors limiting quantum coherence in real materials is essential to the development of quantum technologies. Here we report a strategic approach to determine the effect of lattice dynamics on spin coherence lifetimes using oxygen deficient double perovskites as host materials. In addition to obtaining millisecond <i>T</i><sub>1</sub> spin-lattice lifetimes at T ~ 10 K, measurable quantum superpositions were observed up to room temperature. We determine that <i>T</i><sub><i>2</i></sub> enhancement in Sr<sub>2</sub>CaWO<sub>6-δ</sub> over previously studied Ba<sub>2</sub>CaWO<sub>6-δ</sub> is caused by a dynamically-driven increase in effective site symmetry around the dominant paramagnetic site, assigned as W<sup>5+</sup> via electron paramagnetic resonance spectroscopy. Further, a combination of experimental and computational techniques enabled quantification of the relative strength of spin-phonon coupling of each phonon mode. This analysis demonstrates the effect of thermodynamics and site symmetry on the spin lifetimes of W<sup>5+</sup> paramagnetic defects, an important step in the process of reducing decoherence to produce longer-lived qubits.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"232 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144311797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spin-orbital excitations encoding the magnetic phase transition in the van der Waals antiferromagnet FePS3 范德华反铁磁体FePS3中编码磁相变的自旋轨道激发
IF 5.7 1区 物理与天体物理
npj Quantum Materials Pub Date : 2025-06-17 DOI: 10.1038/s41535-025-00777-0
Yuan Wei, Yi Tseng, Hebatalla Elnaggar, Wenliang Zhang, Teguh Citra Asmara, Eugenio Paris, Gabriele Domaine, Vladimir N. Strocov, Luc Testa, Virgile Favre, Mario Di Luca, Mitali Banerjee, Andrew R. Wildes, Frank M. F. de Groot, Henrik M. Rønnow, Thorsten Schmitt
{"title":"Spin-orbital excitations encoding the magnetic phase transition in the van der Waals antiferromagnet FePS3","authors":"Yuan Wei, Yi Tseng, Hebatalla Elnaggar, Wenliang Zhang, Teguh Citra Asmara, Eugenio Paris, Gabriele Domaine, Vladimir N. Strocov, Luc Testa, Virgile Favre, Mario Di Luca, Mitali Banerjee, Andrew R. Wildes, Frank M. F. de Groot, Henrik M. Rønnow, Thorsten Schmitt","doi":"10.1038/s41535-025-00777-0","DOIUrl":"https://doi.org/10.1038/s41535-025-00777-0","url":null,"abstract":"<p>Van der Waals (vdW) materials are featuring intertwined electronic order and collective phenomena. Elucidating the dynamics of the elementary excitations within the fundamental electronic degrees of freedom is of paramount importance. Here we performed resonant inelastic X-ray scattering (RIXS) to elaborate the spin-orbital excitations of the vdW antiferromagnet FePS<sub>3</sub> and their role for magnetism. We observed the spectral enhancement of spin-orbital multiplet excitations at about ~100 and ~220 meV, as well as the quasielastic response, when entering the antiferromagnetic phase with an order-parameter-like evolution in temperature. By comparing with model calculations, we discovered the trigonal lattice distortion, spin-orbit interaction and metal-ligand charge-transfer to be essential for these emergent excitations. We further reveal their spectral robustness down to the few atomic-layer limit by mechanical exfoliation, in accordance with the persistent antiferromagnetism reported previously. Our study highlights the crucial role of lattice and orbital anisotropy for stabilizing the quasi-two-dimensional magnetism and tailoring vdW magnets.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"605 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144305460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orbital inversion and emergent lattice dynamics in infinite layer CaCoO2 无限层CaCoO2的轨道反演和涌现晶格动力学
IF 5.7 1区 物理与天体物理
npj Quantum Materials Pub Date : 2025-06-16 DOI: 10.1038/s41535-025-00778-z
Daniel Jost, Eder G. Lomeli, Woo Jin Kim, Emily M. Been, Matteo Rossi, Stefano Agrestini, Ke-Jin Zhou, Chunjing Jia, Brian Moritz, Zhi-Xun Shen, Harold Y. Hwang, Thomas P. Devereaux, Wei-Sheng Lee
{"title":"Orbital inversion and emergent lattice dynamics in infinite layer CaCoO2","authors":"Daniel Jost, Eder G. Lomeli, Woo Jin Kim, Emily M. Been, Matteo Rossi, Stefano Agrestini, Ke-Jin Zhou, Chunjing Jia, Brian Moritz, Zhi-Xun Shen, Harold Y. Hwang, Thomas P. Devereaux, Wei-Sheng Lee","doi":"10.1038/s41535-025-00778-z","DOIUrl":"https://doi.org/10.1038/s41535-025-00778-z","url":null,"abstract":"<p>The layered cobaltate CaCoO<sub><b>2</b></sub> exhibits a unique herringbone-like structure. Serving as a potential prototype for a new class of complex lattice patterns, we study the properties of CaCoO<sub><b>2</b></sub> using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). Our results reveal a significant inter-plane hybridization between the Ca <b>4s-</b> and Co <b>3d-</b> orbitals, leading to an inversion of the textbook orbital occupation of a square planar geometry. Further, our RIXS data reveal a strong low energy mode, with anomalous intensity modulations as a function of momentum transfer close to a quasi-static response. These findings indicate that the newly discovered herringbone structure exhibited in CaCoO<sub><b>2</b></sub> may serve as a promising laboratory for the design of materials having strong electronic, orbital and lattice correlations.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"152 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144296018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing chiral Kitaev spin liquids via dangling boundary fermions 利用悬垂边界费米子探测手性基塔耶夫自旋液体
IF 5.7 1区 物理与天体物理
npj Quantum Materials Pub Date : 2025-06-14 DOI: 10.1038/s41535-025-00770-7
Shang-Shun Zhang, Gábor B. Halász, Cristian D. Batista
{"title":"Probing chiral Kitaev spin liquids via dangling boundary fermions","authors":"Shang-Shun Zhang, Gábor B. Halász, Cristian D. Batista","doi":"10.1038/s41535-025-00770-7","DOIUrl":"https://doi.org/10.1038/s41535-025-00770-7","url":null,"abstract":"<p>Identifying experimental probes capable of diagnosing extreme quantum behavior is widely regarded as one of the foremost challenges in modern condensed matter physics. Here, we propose a novel approach for detecting chiral Kitaev spin-liquid states through measurements of the local dynamical spin structure factor on the boundary using scanning tunneling microscopy (STM). We specifically focus on unpaired (“dangling”) Majorana fermions, which naturally emerge along boundaries of Kitaev spin liquids, and can serve as indicators of chiral boundary modes under broad conditions, thereby offering a clear signature of these exotic quantum states.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"10 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144288485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anomalous currents and spontaneous vortices in spin-orbit coupled superconductors 自旋轨道耦合超导体中的异常电流和自发涡流
IF 5.7 1区 物理与天体物理
npj Quantum Materials Pub Date : 2025-06-11 DOI: 10.1038/s41535-025-00773-4
Benjamin A. Levitan, Yuval Oreg, Erez Berg
{"title":"Anomalous currents and spontaneous vortices in spin-orbit coupled superconductors","authors":"Benjamin A. Levitan, Yuval Oreg, Erez Berg","doi":"10.1038/s41535-025-00773-4","DOIUrl":"https://doi.org/10.1038/s41535-025-00773-4","url":null,"abstract":"<p>We propose a mechanism which can generate supercurrents in spin-orbit coupled superconductors with charged magnetic inclusions. The basic idea is that through spin-orbit interaction, the in-plane electric field near the edge of each inclusion appears to the electrons as an effective spin-dependent gauge field; if Cooper pairs can be partially spin polarized, then each pair experiences a nonzero <i>net</i> transverse pseudo-gauge field. We explore the phenomenology of our mechanism within a Ginzburg-Landau theory, with parameters determined from a microscopic model. Depending on parameters, our mechanism can either enhance or reduce the total magnetization upon superconducting condensation. Given an appropriate distribution of inclusions, we show how our mechanism can generate superconducting vortices without any applied orbital magnetic field. Our mechanism can produce similar qualitative behavior to the “magnetic memory effect” observed in 4Hb-TaS<sub>2</sub><sup>1</sup>. However, the magnitude of the effect in that material seems larger than our model can naturally explain.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"5 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144268995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pressure-induced structural phase transitions in CrSBr CrSBr中压力诱导的结构相变
IF 5.7 1区 物理与天体物理
npj Quantum Materials Pub Date : 2025-06-11 DOI: 10.1038/s41535-025-00767-2
Luther J. Langston, Alberto M. Ruiz, Carla Boix-Constant, Samuel Mañas-Valero, Eugenio Coronado, José J. Baldoví, Zhenxian Liu, Janice L. Musfeldt
{"title":"Pressure-induced structural phase transitions in CrSBr","authors":"Luther J. Langston, Alberto M. Ruiz, Carla Boix-Constant, Samuel Mañas-Valero, Eugenio Coronado, José J. Baldoví, Zhenxian Liu, Janice L. Musfeldt","doi":"10.1038/s41535-025-00767-2","DOIUrl":"https://doi.org/10.1038/s41535-025-00767-2","url":null,"abstract":"<p>There is growing interest in combining chemical complexity with external stimuli like pressure, field, and light for property control in van der Waals solids. This is because extreme conditions trigger the development of new states of matter and functionality. In this work, we bring together synchrotron-based infrared absorption, Raman scattering, and diamond anvil cell techniques with first-principles calculations of the lattice dynamics and energy landscape to reveal the series of structural phase transitions in CrSBr. By tracking how the phonons change under pressure, we uncover a remarkable chain of complex symmetry modifications, interlayer interactions, and chemical reactions. A group-subgroup analysis suggests that CrSBr undergoes an orthorhombic <i>P</i><i>m</i><i>m</i><i>n</i> → monoclinic <i>P</i>2/<i>m</i> transition at 7.6 GPa, and based upon a comparison with model oxychlorides like FeOCl and CrOCl, we propose that changes in the pendant halide groups drive the system to a <i>P</i>2<sub>1</sub>/<i>m</i>-like space group above 15.3 GPa. Compression above 20.2 GPa is irreversible, resulting in the formation of an entirely new compound that is metastable for months. This work opens the door to the use of pressure and possibly strain to control the properties of CrSBr.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"173 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144260215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct visualization of a disorder driven electronic smectic phase in nonsymmorphic square-net semimetal GdSbTe 非对称方网半金属GdSbTe中无序驱动电子半晶相的直接可视化
IF 5.7 1区 物理与天体物理
npj Quantum Materials Pub Date : 2025-06-07 DOI: 10.1038/s41535-025-00779-y
Balaji Venkatesan, Syu-You Guan, Jen-Te Chang, Shiang-Bin Chiu, Po-Yuan Yang, Chih-Chuan Su, Tay-Rong Chang, Kalaivanan Raju, Raman Sankar, Somboon Fongchaiya, Ming-Wen Chu, Chia-Seng Chang, Guoqing Chang, Hsin Lin, Adrian Del Maestro, Ying-Jer Kao, Tien-Ming Chuang
{"title":"Direct visualization of a disorder driven electronic smectic phase in nonsymmorphic square-net semimetal GdSbTe","authors":"Balaji Venkatesan, Syu-You Guan, Jen-Te Chang, Shiang-Bin Chiu, Po-Yuan Yang, Chih-Chuan Su, Tay-Rong Chang, Kalaivanan Raju, Raman Sankar, Somboon Fongchaiya, Ming-Wen Chu, Chia-Seng Chang, Guoqing Chang, Hsin Lin, Adrian Del Maestro, Ying-Jer Kao, Tien-Ming Chuang","doi":"10.1038/s41535-025-00779-y","DOIUrl":"https://doi.org/10.1038/s41535-025-00779-y","url":null,"abstract":"<p>Electronic liquid crystal (ELC) phases are spontaneous symmetry breaking states believed to arise from strong electron correlation in quantum materials such as cuprates and iron pnictides. Here, we report a direct observation of a smectic phase in a weakly correlated nonsymmorphic square-net semimetal GdSb<sub>x</sub>Te<sub>2-x</sub>. Incommensurate smectic charge modulation and intense local unidirectional nanostructure, which coexist with Dirac fermions across Fermi level, are visualized by using spectroscopic imaging—scanning tunneling microscopy. As materials with highly mobile carriers are mostly weakly correlated, the discovery of such an ELC phase are anomalous and raise questions on the origin of their emergence. Specifically, we demonstrate how chemical substitution generates these symmetry breaking phases before the system undergoes a charge density wave (CDW)—orthorhombic structural transition. Our results highlight the importance of impurities in realizing ELC phases and present a new material platform for exploring the interplay among quenched disorder, Dirac fermions and electron correlation.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"170 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144237404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信