CrSBr中压力诱导的结构相变

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Luther J. Langston, Alberto M. Ruiz, Carla Boix-Constant, Samuel Mañas-Valero, Eugenio Coronado, José J. Baldoví, Zhenxian Liu, Janice L. Musfeldt
{"title":"CrSBr中压力诱导的结构相变","authors":"Luther J. Langston, Alberto M. Ruiz, Carla Boix-Constant, Samuel Mañas-Valero, Eugenio Coronado, José J. Baldoví, Zhenxian Liu, Janice L. Musfeldt","doi":"10.1038/s41535-025-00767-2","DOIUrl":null,"url":null,"abstract":"<p>There is growing interest in combining chemical complexity with external stimuli like pressure, field, and light for property control in van der Waals solids. This is because extreme conditions trigger the development of new states of matter and functionality. In this work, we bring together synchrotron-based infrared absorption, Raman scattering, and diamond anvil cell techniques with first-principles calculations of the lattice dynamics and energy landscape to reveal the series of structural phase transitions in CrSBr. By tracking how the phonons change under pressure, we uncover a remarkable chain of complex symmetry modifications, interlayer interactions, and chemical reactions. A group-subgroup analysis suggests that CrSBr undergoes an orthorhombic <i>P</i><i>m</i><i>m</i><i>n</i> → monoclinic <i>P</i>2/<i>m</i> transition at 7.6 GPa, and based upon a comparison with model oxychlorides like FeOCl and CrOCl, we propose that changes in the pendant halide groups drive the system to a <i>P</i>2<sub>1</sub>/<i>m</i>-like space group above 15.3 GPa. Compression above 20.2 GPa is irreversible, resulting in the formation of an entirely new compound that is metastable for months. This work opens the door to the use of pressure and possibly strain to control the properties of CrSBr.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"173 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure-induced structural phase transitions in CrSBr\",\"authors\":\"Luther J. Langston, Alberto M. Ruiz, Carla Boix-Constant, Samuel Mañas-Valero, Eugenio Coronado, José J. Baldoví, Zhenxian Liu, Janice L. Musfeldt\",\"doi\":\"10.1038/s41535-025-00767-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is growing interest in combining chemical complexity with external stimuli like pressure, field, and light for property control in van der Waals solids. This is because extreme conditions trigger the development of new states of matter and functionality. In this work, we bring together synchrotron-based infrared absorption, Raman scattering, and diamond anvil cell techniques with first-principles calculations of the lattice dynamics and energy landscape to reveal the series of structural phase transitions in CrSBr. By tracking how the phonons change under pressure, we uncover a remarkable chain of complex symmetry modifications, interlayer interactions, and chemical reactions. A group-subgroup analysis suggests that CrSBr undergoes an orthorhombic <i>P</i><i>m</i><i>m</i><i>n</i> → monoclinic <i>P</i>2/<i>m</i> transition at 7.6 GPa, and based upon a comparison with model oxychlorides like FeOCl and CrOCl, we propose that changes in the pendant halide groups drive the system to a <i>P</i>2<sub>1</sub>/<i>m</i>-like space group above 15.3 GPa. Compression above 20.2 GPa is irreversible, resulting in the formation of an entirely new compound that is metastable for months. This work opens the door to the use of pressure and possibly strain to control the properties of CrSBr.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"173 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-025-00767-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00767-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人们对将化学复杂性与外部刺激(如压力、场和光)相结合以控制范德瓦尔斯固体的性质越来越感兴趣。这是因为极端条件触发了物质和功能新状态的发展。在这项工作中,我们将基于同步加速器的红外吸收,拉曼散射和金刚石砧细胞技术与晶格动力学和能量图的第一性原理计算结合在一起,揭示了CrSBr中的一系列结构相变。通过追踪声子在压力下的变化,我们发现了一系列复杂的对称修饰、层间相互作用和化学反应。群-亚群分析表明,CrSBr在7.6 GPa时经历了一个正交Pmmn→单斜P2/m的转变,并通过与FeOCl和CrOCl等模式氯氧化物的比较,我们提出,在15.3 GPa以上,挂载卤化物基团的变化将系统驱动到P21/m的空间群。高于20.2 GPa的压缩是不可逆的,导致形成一个全新的化合物,亚稳态持续数月。这项工作为使用压力和可能的应变来控制CrSBr的性能打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pressure-induced structural phase transitions in CrSBr

Pressure-induced structural phase transitions in CrSBr

There is growing interest in combining chemical complexity with external stimuli like pressure, field, and light for property control in van der Waals solids. This is because extreme conditions trigger the development of new states of matter and functionality. In this work, we bring together synchrotron-based infrared absorption, Raman scattering, and diamond anvil cell techniques with first-principles calculations of the lattice dynamics and energy landscape to reveal the series of structural phase transitions in CrSBr. By tracking how the phonons change under pressure, we uncover a remarkable chain of complex symmetry modifications, interlayer interactions, and chemical reactions. A group-subgroup analysis suggests that CrSBr undergoes an orthorhombic Pmmn → monoclinic P2/m transition at 7.6 GPa, and based upon a comparison with model oxychlorides like FeOCl and CrOCl, we propose that changes in the pendant halide groups drive the system to a P21/m-like space group above 15.3 GPa. Compression above 20.2 GPa is irreversible, resulting in the formation of an entirely new compound that is metastable for months. This work opens the door to the use of pressure and possibly strain to control the properties of CrSBr.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信