Zuzanna Kostera, Jerzy Antonowicz and Przemysław Dzięgielewski
{"title":"Atomic and electronic structures of Ni64Zr36 metallic glass under high pressure","authors":"Zuzanna Kostera, Jerzy Antonowicz and Przemysław Dzięgielewski","doi":"10.1088/1367-2630/ad602c","DOIUrl":"https://doi.org/10.1088/1367-2630/ad602c","url":null,"abstract":"Amorphous metallic alloys, also known as metallic glasses (MGs), are materials with unique physical properties resulting from their disordered yet densely packed atomic structure. The packing density of MGs can be further enhanced by external pressure, forcing the decrease of interatomic distances and modifying both the atomic and electronic structure of an alloy. This work reports on classical molecular dynamics (MD) and density functional theory (DFT) studies of Ni64Zr36 MG in a hydrostatic pressure range of 0–120 GPa. The MD simulations revealed that compression leads to enhanced short-range ordering by increasing the contribution of efficiently packed icosahedral-like clusters. According to the DFT calculations, for pressure above 50 GPa, Zr atoms show a significant change in electronic configuration, with a dominant charge transfer from their s and p to d-states and charge redistribution between Ni and Zr atoms. This variation is correlated with the appearance of pairs with significantly shortened interatomic distances, as detected by the MD. We conclude that the enhanced icosahedral ordering in Ni64Zr36 MG is induced not only by the pressure-driven densification of an alloy but also by a variation of its electronic structure.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"663 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An efficient quantum algorithm for independent component analysis","authors":"Xiao-Fan Xu, Xi-Ning Zhuang, Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu and Guo-Ping Guo","doi":"10.1088/1367-2630/ad5e16","DOIUrl":"https://doi.org/10.1088/1367-2630/ad5e16","url":null,"abstract":"Independent component analysis (ICA) is a fundamental data processing technique to decompose the captured signals into as independent as possible components. Computing the contrast function, which serves as a measure of the independence of signals, is vital and costs major computing resources in ICA. This paper presents a quantum algorithm that focuses on computing a specified contrast function on a quantum computer. Using the quantum acceleration in matrix operations, we efficiently deal with Gram matrices and estimate the contrast function with the complexity of . This estimation subprogram, combined with the classical optimization framework, builds up our ICA algorithm, which exponentially reduces the complexity dependence on the data scale compared with algorithms using only classical computers. The outperformance is further supported by numerical experiments, while our algorithm is then applied for the separation of a transcriptomic dataset and for financial time series forecasting, to predict the Nikkei 225 opening index to show its potential application prospect.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"69 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Namkung, Dong-Hyun Kim, Seongjin Hong, Yong-Su Kim, Changhyoup Lee and Hyang-Tag Lim
{"title":"Optimal multiple-phase estimation with multi-mode NOON states against photon loss","authors":"Min Namkung, Dong-Hyun Kim, Seongjin Hong, Yong-Su Kim, Changhyoup Lee and Hyang-Tag Lim","doi":"10.1088/1367-2630/ad5eaf","DOIUrl":"https://doi.org/10.1088/1367-2630/ad5eaf","url":null,"abstract":"Multi-mode NOON states can quantum-enhance multiple-phase estimation in the absence of photon loss. However, a multi-mode NOON state is known to be vulnerable to photon loss, and its quantum-enhancement can be dissipated by lossy environment. In this work, we demonstrate that a quantum advantage in estimate precision can still be achieved in the presence of photon loss. This is accomplished by optimizing the weights of the multi-mode NOON states according to photon loss rates in the multiple modes, including the reference mode which defines the other phases. For practical relevance, we also show that photon-number counting via a multi-mode beam-splitter achieves the useful, albeit sub-optimal, quantum advantage. We expect this work to provide valuable guidance for developing quantum-enhanced multiple-phase estimation techniques in lossy environments.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"41 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brahim Lemkalli, Muamer Kadic, Youssef El Badri, Sébastien Guenneau, Abdellah Mir and Younes Achaoui
{"title":"Longitudinal-twist wave converter based on chiral metamaterials","authors":"Brahim Lemkalli, Muamer Kadic, Youssef El Badri, Sébastien Guenneau, Abdellah Mir and Younes Achaoui","doi":"10.1088/1367-2630/ad617b","DOIUrl":"https://doi.org/10.1088/1367-2630/ad617b","url":null,"abstract":"Advances in material architectures have enabled endowing materials with exotic attributes not commonly available in the conventional realm of mechanical engineering. Twisting, a mechanism whereby metamaterials are used to transform static axial load into twist motion, is of particular interest to this study. Herein, computations based on the finite element method, corroborated by a theoretical approach derived from applying Lagrange’s equations to a monoatomic spring-mass system, are employed to explore the longitudinal-twist (L-T) conversion exhibited by a chiral tetragonal-beam metamaterial. Firstly, we perform an eigenvalue analysis taking into account the polarization states to highlight the contribution of the longitudinal mode in the L-T conversion. We contrast the twisting behavior of the chiral cell with that of other homogeneous medium, octagonal-tube, and non-chiral cells. Moreover, we demonstrate the influence of the cell’s chirality on the L-T conversion using both time-domain and frequency-domain studies. The findings indicate that at least a portion of the longitudinally propagating wave is transformed into twist throughout a broad frequency range and even quasi-totally converted at distinct frequencies.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"14 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141739811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Long-time properties of generic Floquet systems are approximately periodic with the driving period","authors":"Yichen Huang (黄溢辰)","doi":"10.1088/1367-2630/ad5eb1","DOIUrl":"https://doi.org/10.1088/1367-2630/ad5eb1","url":null,"abstract":"A Floquet quantum system is governed by a Hamiltonian that is periodic in time. Consider the space of piecewise time-independent Floquet systems with (geometrically) local interactions. We prove that for all but a measure zero set of systems in this space, starting from a random product state, many properties (including expectation values of observables and the entanglement entropy of a macroscopically large subsystem) at long times are approximately periodic with the same period as the Hamiltonian. Thus, in almost every Floquet system of arbitrarily large but finite size, discrete time-crystalline behavior does not persist to strictly infinite time.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"64 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141719873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonequilibrium quantum heat transport between structured environments","authors":"Graeme Pleasance and Francesco Petruccione","doi":"10.1088/1367-2630/ad5bfb","DOIUrl":"https://doi.org/10.1088/1367-2630/ad5bfb","url":null,"abstract":"We apply the hierarchical equations of motion technique to analyzing nonequilibrium heat transport in a spin-boson type model, whereby heat transfer through a central spin is mediated by an intermediate pair of coupled harmonic oscillators. The coupling between each pair of oscillators is shown to introduce a localized gap into the effective spectral densities characterizing the system–oscillator–reservoir interactions. Compared to the case of a single mediating oscillator, we find the heat current to be drastically modified at weak system-bath coupling. In particular, a second-order treatment fails to capture the correct steady-state behavior in this regime, which stems from the λ4-scaling of the energy transfer rate to lowest order in the coupling strength λ. This leads naturally to a strong suppression in the steady-state current in the asymptotically weak coupling limit. On the other hand, the current noise follows the same scaling as in the single oscillator case in accordance with the fluctuation-dissipation theorem. Additionally, we find the heat current to be consistent with Fourier’s law even at large temperature bias. Our analysis highlights a novel mechanism for controlling heat transport in nanoscale systems based on tailoring the spectral properties of thermal environments.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"92 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141719872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Riccardo Tancredi, Antonio Feltrin, Giosuè Sardo Infirri, Simone Toso, Leonie Vollmar, Thorsten Hugel and Marco Baiesi
{"title":"Constrained hidden Markov models reveal further Hsp90 protein states","authors":"Riccardo Tancredi, Antonio Feltrin, Giosuè Sardo Infirri, Simone Toso, Leonie Vollmar, Thorsten Hugel and Marco Baiesi","doi":"10.1088/1367-2630/ad5def","DOIUrl":"https://doi.org/10.1088/1367-2630/ad5def","url":null,"abstract":"Time series of conformational dynamics in proteins are usually evaluated with hidden Markov models (HMMs). This approach works well if the number of states and their connectivity is known. However, for the multi-domain protein Hsp90, a standard HMM analysis with optimization of the BIC (Bayesian information criterion) cannot explain long-lived states well. Therefore, here we employ constrained HMMs, which neglect transitions between states by including assumptions. Gradually tuning a model with justified and focused changes allows us to improve its effectiveness and the score of the BIC. This became possible by analyzing time traces with several thousand observable transitions and, therefore, superb statistics. In this scheme, we also monitor the residences in the states reconstructed by the model, aiming to find exponentially distributed dwell times. We show how introducing new states can achieve these statistics but also point out limitations, e.g. for substantial similarity of two states connected to a common neighbor. One of the states displays the lowest free energy and could be the idle open ‘waiting state’, in which Hsp90 waits for the binding of nucleotides, cochaperones, or clients.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"48 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141719874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giacomo Sorelli, Manuel Gessner, Nicolas Treps and Mattia Walschaers
{"title":"Gaussian quantum metrology for mode-encoded parameters","authors":"Giacomo Sorelli, Manuel Gessner, Nicolas Treps and Mattia Walschaers","doi":"10.1088/1367-2630/ad5eb2","DOIUrl":"https://doi.org/10.1088/1367-2630/ad5eb2","url":null,"abstract":"Quantum optical metrology aims to identify ultimate sensitivity bounds for the estimation of parameters encoded into quantum states of the electromagnetic field. In many practical applications, including imaging, microscopy, and remote sensing, the parameter of interest is not only encoded in the quantum state of the field, but also in its spatio-temporal distribution, i.e. in its mode structure. In this mode-encoded parameter estimation setting, we derive an analytical expression for the quantum Fisher information valid for arbitrary multimode Gaussian fields. To illustrate the power of our approach, we apply our results to the estimation of the transverse displacement of a beam and to the temporal separation between two pulses. For these examples, we show how the estimation sensitivity can be enhanced by adding squeezing into specific modes.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"11 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141719875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A L Vanel, M Dubois, C Tronche, S Fu, Y-T Wang, G Dupont, A D Rakić, K Bertling, R Abdeddaim, S Enoch, R V Craster, G Li, S Guenneau and J Perchoux
{"title":"Collimated beam formation in 3D acoustic sonic crystals","authors":"A L Vanel, M Dubois, C Tronche, S Fu, Y-T Wang, G Dupont, A D Rakić, K Bertling, R Abdeddaim, S Enoch, R V Craster, G Li, S Guenneau and J Perchoux","doi":"10.1088/1367-2630/ad5c94","DOIUrl":"https://doi.org/10.1088/1367-2630/ad5c94","url":null,"abstract":"We demonstrate strongly collimated beam formation, at audible frequencies, in a three-dimensional acoustic phononic crystal where the wavelength is commensurate with the crystal elements; the crystal is a seemingly simple rectangular cuboid constructed from closely-spaced spheres, and yet demonstrates rich wave phenomena acting as a canonical three-dimensional metamaterial. We employ theory, numerical simulation and experiments to design and interpret this collimated beam phenomenon and use a crystal consisting of a finite rectangular cuboid array of polymer spheres 1.38 cm in diameter in air, arranged in a primitive cubic cell with the centre-to-centre spacing of the spheres, i.e. the pitch, as 1.5 cm. Collimation effects are observed in the time domain for chirps with central frequencies at 14.2 kHz and 18 kHz, and we deployed a laser feedback interferometer or Self-Mixing Interferometer – a recently proposed technique to observe complex acoustic fields—that enables experimental visualisation of the pressure field both within the crystal and outside of the crystal. Numerical exploration using a higher-order multi-scale finite element method designed for the rapid and detailed simulation of 3D wave physics further confirms these collimation effects and cross-validates with the experiments. Interpretation follows using High Frequency Homogenization and Bloch analysis whereby the different origin of the collimation at these two frequencies is revealed by markedly different isofrequency surfaces of the sonic crystal.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"60 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141610150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Persistent and anti-persistent motion in bounded and unbounded space: resolution of the first-passage problem","authors":"Daniel Marris and Luca Giuggioli","doi":"10.1088/1367-2630/ad5d85","DOIUrl":"https://doi.org/10.1088/1367-2630/ad5d85","url":null,"abstract":"The presence of temporal correlations in random movement trajectories is a widespread phenomenon across biological, chemical and physical systems. The ubiquity of persistent and anti-persistent motion in many natural and synthetic systems has led to a large literature on the modelling of temporally correlated movement paths. Despite the substantial body of work, little progress has been made to determine the dynamical properties of various transport related quantities, including the first-passage or first-hitting probability to one or multiple absorbing targets when space is bounded. To bridge this knowledge gap we generalise the renewal theory of first-passage and splitting probabilities to correlated discrete variables. We do so in arbitrary dimensions on a lattice for the so-called correlated or persistent random walk, the one step non-Markovian extension of the simple lattice random walk in bounded and unbounded space. We focus on bounded domains and consider both persistent and anti-persistent motion in hypercubic lattices as well as the hexagonal lattice. The discrete formalism allows us to extend the notion of the first-passage to that of the directional first-passage, whereby the walker must reach the target from a prescribed direction for a hitting event to occur. As an application to spatio-temporal observations of correlated moving cells that may be either repelled or attracted to hard surfaces, we compare the first-passage statistics to a target within a reflecting domain depending on whether an interaction with the reflective interface invokes a reversal of the movement direction or not. With strong persistence we observe multi-modality in the first-passage distribution in the former case, which instead is greatly suppressed in the latter.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"58 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141610152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}