结构环境之间的非平衡量子热传输

IF 2.8 2区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Graeme Pleasance and Francesco Petruccione
{"title":"结构环境之间的非平衡量子热传输","authors":"Graeme Pleasance and Francesco Petruccione","doi":"10.1088/1367-2630/ad5bfb","DOIUrl":null,"url":null,"abstract":"We apply the hierarchical equations of motion technique to analyzing nonequilibrium heat transport in a spin-boson type model, whereby heat transfer through a central spin is mediated by an intermediate pair of coupled harmonic oscillators. The coupling between each pair of oscillators is shown to introduce a localized gap into the effective spectral densities characterizing the system–oscillator–reservoir interactions. Compared to the case of a single mediating oscillator, we find the heat current to be drastically modified at weak system-bath coupling. In particular, a second-order treatment fails to capture the correct steady-state behavior in this regime, which stems from the λ4-scaling of the energy transfer rate to lowest order in the coupling strength λ. This leads naturally to a strong suppression in the steady-state current in the asymptotically weak coupling limit. On the other hand, the current noise follows the same scaling as in the single oscillator case in accordance with the fluctuation-dissipation theorem. Additionally, we find the heat current to be consistent with Fourier’s law even at large temperature bias. Our analysis highlights a novel mechanism for controlling heat transport in nanoscale systems based on tailoring the spectral properties of thermal environments.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"92 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonequilibrium quantum heat transport between structured environments\",\"authors\":\"Graeme Pleasance and Francesco Petruccione\",\"doi\":\"10.1088/1367-2630/ad5bfb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply the hierarchical equations of motion technique to analyzing nonequilibrium heat transport in a spin-boson type model, whereby heat transfer through a central spin is mediated by an intermediate pair of coupled harmonic oscillators. The coupling between each pair of oscillators is shown to introduce a localized gap into the effective spectral densities characterizing the system–oscillator–reservoir interactions. Compared to the case of a single mediating oscillator, we find the heat current to be drastically modified at weak system-bath coupling. In particular, a second-order treatment fails to capture the correct steady-state behavior in this regime, which stems from the λ4-scaling of the energy transfer rate to lowest order in the coupling strength λ. This leads naturally to a strong suppression in the steady-state current in the asymptotically weak coupling limit. On the other hand, the current noise follows the same scaling as in the single oscillator case in accordance with the fluctuation-dissipation theorem. Additionally, we find the heat current to be consistent with Fourier’s law even at large temperature bias. Our analysis highlights a novel mechanism for controlling heat transport in nanoscale systems based on tailoring the spectral properties of thermal environments.\",\"PeriodicalId\":19181,\"journal\":{\"name\":\"New Journal of Physics\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1367-2630/ad5bfb\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad5bfb","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们将分层运动方程技术应用于分析自旋玻色子类型模型中的非平衡热传输,在该模型中,通过中心自旋的热传输是由中间一对耦合谐波振荡器介导的。研究表明,每对振荡器之间的耦合会在表征系统-振荡器-储层相互作用的有效谱密度中引入局部间隙。与单个介导振荡器的情况相比,我们发现在弱系统-水浴耦合时,热流会发生急剧变化。特别是,二阶处理无法捕捉到该机制中正确的稳态行为,这源于能量传递速率在耦合强度λ中的λ4-缩放至最低阶。另一方面,根据波动耗散定理,电流噪声的比例与单振子情况下的相同。此外,我们发现即使在温度偏差较大的情况下,热电流也符合傅里叶定律。我们的分析凸显了一种基于定制热环境光谱特性来控制纳米级系统热传输的新机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonequilibrium quantum heat transport between structured environments
We apply the hierarchical equations of motion technique to analyzing nonequilibrium heat transport in a spin-boson type model, whereby heat transfer through a central spin is mediated by an intermediate pair of coupled harmonic oscillators. The coupling between each pair of oscillators is shown to introduce a localized gap into the effective spectral densities characterizing the system–oscillator–reservoir interactions. Compared to the case of a single mediating oscillator, we find the heat current to be drastically modified at weak system-bath coupling. In particular, a second-order treatment fails to capture the correct steady-state behavior in this regime, which stems from the λ4-scaling of the energy transfer rate to lowest order in the coupling strength λ. This leads naturally to a strong suppression in the steady-state current in the asymptotically weak coupling limit. On the other hand, the current noise follows the same scaling as in the single oscillator case in accordance with the fluctuation-dissipation theorem. Additionally, we find the heat current to be consistent with Fourier’s law even at large temperature bias. Our analysis highlights a novel mechanism for controlling heat transport in nanoscale systems based on tailoring the spectral properties of thermal environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Physics
New Journal of Physics 物理-物理:综合
CiteScore
6.20
自引率
3.00%
发文量
504
审稿时长
3.1 months
期刊介绍: New Journal of Physics publishes across the whole of physics, encompassing pure, applied, theoretical and experimental research, as well as interdisciplinary topics where physics forms the central theme. All content is permanently free to read and the journal is funded by an article publication charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信