{"title":"The dynamical evolution of exciton-polaritons in asymmetric ring-step potential well","authors":"Yifan Dong, Yuan Ren, Xiuqian Li, Zhenyu Xiong, Tieling Song, Aolin Guo, Longfei Guo, Baili Li, Peicheng Liu and Hao Wu","doi":"10.1088/1367-2630/ad692b","DOIUrl":"https://doi.org/10.1088/1367-2630/ad692b","url":null,"abstract":"The exciton-polariton, a quasi-particle formed by the coupling of excitons and photons, exhibits a semi-light-semi-matter nature, inheriting the advantages of both constituents and capable of achieving Bose-Einstein condensation at room temperature. This paper investigates the evolution of superposition states of semiconductor microcavity exciton-polariton Bose–Einstein condensate (BEC) within a ring-shaped structure. By employing theoretical modeling, the time-dependent dynamics of the superposition states of exciton-polaritons bound within a unique asymmetric ring-step potential well structure are analyzed, focusing on halide perovskite semiconductor materials. The study reveals correlations between the potential well structure of this step-like configuration and the transition of exciton-polariton BEC superposition states, shedding light on the evolution paths of BEC systems under specific structural influences and the fluctuation patterns of excitonic fields. These findings hold relevance for experimental manipulations of exciton-polariton superposition states within microcavities. This research demonstrates that ring-step potential well structures influence the excitation and evolution of exciton-polariton BEC superposition states, leading to transitions towards higher or lower order states. This transition is reflected macroscopically in alterations in the number and spatial distribution of interference petals in the superposition states. We consider initial states with orbital angular momentum quantum number l = 2, 3, 4, respectively. By exploiting the different structural relationships of ring-step potential wells, we achieve controlled evolutions of macroscopic occupation states, with interference petal numbers ranging from 4 to 6, 4–8, 6–8, 6–10, 8–10, 8–12, and 6–4.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"72 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141941271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced phase sensitivity in a feedback-assisted interferometer","authors":"Gao-Feng Jiao","doi":"10.1088/1367-2630/ad69b9","DOIUrl":"https://doi.org/10.1088/1367-2630/ad69b9","url":null,"abstract":"The topology of feedback optical parametric amplifier (FOPA) renders a number of significant advantages over the topology of traditional optical parametric amplifier (TOPA) such as a higher degree of quantum correlation, all-phase entanglement enhancement, and the robustness of the losses. Here, we propose a feedback-assisted interferometer based on the topology of FOPA for quantum metrology. We theoretically study the phase sensitivity with the method of homodyne detection and product detection. By manipulating the feedback strength of the FOPA, the phase sensitivity can be further enhanced, and approach the quantum Cramér-Rao bound. Furthermore, we demonstrate that our proposal is superior to the SU(1,1) interferometer based on the topology of TOPA.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"2012 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141941273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meghdad Saeedian, Chengyi Tu, Fabio Menegazzo, Paolo D’Odorico, Sandro Azaele and Samir Suweis
{"title":"Modelling co-evolution of resource feedback and social network dynamics in human-environmental systems","authors":"Meghdad Saeedian, Chengyi Tu, Fabio Menegazzo, Paolo D’Odorico, Sandro Azaele and Samir Suweis","doi":"10.1088/1367-2630/ad67fe","DOIUrl":"https://doi.org/10.1088/1367-2630/ad67fe","url":null,"abstract":"Games with environmental feedback have become a crucial area of study across various scientific domains, modelling the dynamic interplay between human decisions and environmental changes, and highlighting the consequences of our choices on natural resources and biodiversity. In this work, we propose a co-evolutionary model for human-environment systems that incorporates the effects of knowledge feedback and social interaction on the sustainability of common pool resources (CPRs). The model represents consumers as agents who adjust their resource extraction based on the resource’s state. These agents are connected through social networks, where links symbolize either affinity or aversion among them. The interplay between social dynamics and resource dynamics is explored, with the system’s evolution analyzed across various network topologies and initial conditions. We find that knowledge feedback can independently sustain CPRs. However, the impact of social interactions on sustainability is dual-faceted: it can either support or impede sustainability, influenced by the network’s connectivity and heterogeneity. A notable finding is the identification of a critical network mean degree, beyond which a depletion/repletion transition parallels an absorbing/active state transition in social dynamics, i.e. individual agents and their connections are/are not prone to being frozen in their social states. Furthermore, the study examines the evolution of the social network, revealing the emergence of two polarized groups where agents within each community have the same affinity. Finally, we observe an inverse relationship between system complexity and sustainability. Comparative analyses using Monte–Carlo simulations and rate equations are employed, along with analytical arguments, to reinforce the study’s findings. The model successfully captures key aspects of the human-environment system, offering valuable insights to understand how both the spread of information and social dynamics may impact the sustainability of CPRs.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"44 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141941274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Madelung mechanics and superoscillations","authors":"Mordecai Waegell","doi":"10.1088/1367-2630/ad689b","DOIUrl":"https://doi.org/10.1088/1367-2630/ad689b","url":null,"abstract":"In single-particle Madelung mechanics, the single-particle quantum state is interpreted as comprising an entire conserved fluid of classical point particles, with local density and local momentum (where R and S are real). The Schrödinger equation gives rise to the continuity equation for the fluid, and the Hamilton–Jacobi equation for particles of the fluid, which includes an additional density-dependent quantum potential energy term , which is all that makes the fluid behavior nonclassical. In particular, the quantum potential can become negative and create a nonclassical boost in the kinetic energy. This boost is related to superoscillations in the wavefunction, where the local frequency of Ψ exceeds its global band limit. Berry showed that for states of definite energy E, the regions of superoscillation are exactly the regions where . For energy superposition states with band-limit , the situation is slightly more complicated, and the bound is no longer . However, the fluid model provides a definite local energy for each fluid particle which allows us to define a local band limit for superoscillation, and with this definition, all regions of superoscillation are again regions where for general superpositions. An alternative interpretation of these quantities involving a reduced quantum potential is reviewed and advanced, and a parallel discussion of superoscillation in this picture is given. Detailed examples are given which illustrate the role of the quantum potential and superoscillations in a range of scenarios.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"23 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141941275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seung Park, Kyunghyun Baek, Seungjin Lee, Mahn-Soo Choi
{"title":"Global optimization in variational quantum algorithms via dynamic tunneling method","authors":"Seung Park, Kyunghyun Baek, Seungjin Lee, Mahn-Soo Choi","doi":"10.1088/1367-2630/ad64fc","DOIUrl":"https://doi.org/10.1088/1367-2630/ad64fc","url":null,"abstract":"We present a global optimization routine for the variational quantum algorithms, which utilizes the dynamic tunneling flow. Originally designed to leverage information gathered by a gradient-based optimizer around local minima, we adapt the conventional dynamic tunneling flow to exploit the distance measure of quantum states, resolving issues of extrinsic degeneracy arising from the parametrization of quantum states. Our global optimization algorithm is applied to the variational quantum eigensolver for the transverse-field Ising model to demonstrate the performance of our routine while comparing it with the conventional dynamic tunneling method, which is based on the Euclidean distance measure on the parameter space.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"16 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Touwen, J W F van Hofslot, T Qualm, R Borchers, R Bause, H L Bethlem, A Boeschoten, A Borschevsky, T H Fikkers, S Hoekstra, K Jungmann, V R Marshall, T B Meijknecht, M C Mooij, R G E Timmermans, W Ubachs, L Willmann, NL-eEDM collaboration
{"title":"Manipulating a beam of barium fluoride molecules using an electrostatic hexapole","authors":"A Touwen, J W F van Hofslot, T Qualm, R Borchers, R Bause, H L Bethlem, A Boeschoten, A Borschevsky, T H Fikkers, S Hoekstra, K Jungmann, V R Marshall, T B Meijknecht, M C Mooij, R G E Timmermans, W Ubachs, L Willmann, NL-eEDM collaboration","doi":"10.1088/1367-2630/ad60ee","DOIUrl":"https://doi.org/10.1088/1367-2630/ad60ee","url":null,"abstract":"An electrostatic hexapole lens is used to manipulate the transverse properties of a beam of barium fluoride molecules from a cryogenic buffer gas source. The spatial distribution of the beam is measured by recording state-selective laser-induced fluorescence on an <sc>emccd</sc> camera, providing insight into the intensity and transverse position spread of the molecular beam. Although the high mass and unfavorable Stark shift of barium fluoride pose a considerable challenge, the number of molecules in the low-field seeking component of the <italic toggle=\"yes\">N</italic> = 1 state that pass a 4 mm diameter aperture 712 mm behind the source is increased by a factor of 12. Furthermore, it is demonstrated that the molecular beam can be displaced by up to ±5 mm by moving the hexapole lens. Our measurements agree well with numerical trajectory simulations. We discuss how electrostatic lenses may be used to increase the sensitivity of beam experiments such as the search for the electric dipole moment of the electron.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"32 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adaptive quantum accelerated imaging for space domain awareness","authors":"Hyunsoo Choi, Fanglin Bao, Zubin Jacob","doi":"10.1088/1367-2630/ad668c","DOIUrl":"https://doi.org/10.1088/1367-2630/ad668c","url":null,"abstract":"The growth in space activity has increased the need for Space Domain Awareness (SDA) to ensure safe space operations. Imaging and detecting space targets is, however, challenging due to their dim appearance, small angular size/separation, dense distribution, and atmospheric turbulence. These challenges render space targets in ground-based imaging observations as point-like objects in the sub-Rayleigh regime, with extreme brightness contrast but a low photon budget. Here, we propose to use the recently developed quantum-accelerated imaging (QAI) for the SDA challenge. We mainly focus on three SDA challenges (1) minimal <italic toggle=\"yes\">a priori</italic> assumptions (2) many-object problem (3) extreme brightness ratio. We also present results on source estimation and localization in the presence of atmospheric turbulence. QAI shows significantly improved estimation in position, brightness, and number of targets for all SDA challenges. In particular, we demonstrate up to 2.5 times better performance in source detection than highly optimized direct imaging in extreme scenarios like stars with a 1000 times brightness ratio. With over 10 000 simulations, we verify the increased resolution of our approach compared to conventional state-of-the-art direct imaging paving the way towards quantum optics approaches for SDA.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"2 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unbending strategies shepherd cooperation and suppress extortion in spatial populations","authors":"Zijie Chen, Yuxin Geng, Xingru Chen, Feng Fu","doi":"10.1088/1367-2630/ad668b","DOIUrl":"https://doi.org/10.1088/1367-2630/ad668b","url":null,"abstract":"Evolutionary game dynamics on networks typically consider the competition among simple strategies such as cooperation and defection in the Prisoner’s Dilemma and summarize the effect of population structure as network reciprocity. However, it remains largely unknown regarding the evolutionary dynamics involving multiple powerful strategies typically considered in repeated games, such as the zero-determinant (ZD) strategies that are able to enforce a linear payoff relationship between them and their co-players. Here, we consider the evolutionary dynamics of always cooperate (AllC), extortionate ZD (extortioners), and unbending players in lattice populations based on the commonly used death-birth updating. Out of the class of unbending strategies that can foster reciprocal cooperation and fairness among extortionate players, we consider a particular candidate, pre-optimized through the machine-learning method of particle swarm optimization (PSO), called PSO Gambler. We derive analytical results under weak selection and rare mutations, including pairwise fixation probabilities and long-term frequencies of strategies. In the absence of the third unbending type, extortioners can achieve a half-half split in equilibrium with unconditional cooperators for sufficiently large extortion factors. However, the presence of unbending players fundamentally changes the dynamics and tilts the system to favor unbending cooperation. Most surprisingly, extortioners cannot dominate at all regardless of how large their extortion factor is, and the long-term frequency of unbending players is maintained almost as a constant. Our analytical method is applicable to studying the evolutionary dynamics of multiple strategies in structured populations. Our work provides insights into the interplay between network reciprocity and direct reciprocity, revealing the role of unbending strategies in enforcing fairness and suppressing extortion.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"11 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exact moments for trapped active particles: inertial impact on steady-state properties and re-entrance","authors":"Manish Patel, Debasish Chaudhuri","doi":"10.1088/1367-2630/ad6349","DOIUrl":"https://doi.org/10.1088/1367-2630/ad6349","url":null,"abstract":"In this study, we investigate the behavior of inertial active Brownian particles in a <italic toggle=\"yes\">d</italic>-dimensional harmonic trap in the presence of translational diffusion. While the solution of the Fokker–Planck equation is generally challenging, it can be utilized to compute the exact time evolution of all time-dependent dynamical moments using a Laplace transform approach. We present the explicit form for several moments of position and velocity in <italic toggle=\"yes\">d</italic>-dimensions. An interplay of time scales assures that the effective diffusivity and steady-state kinetic temperature depend on both inertia and trap strength, unlike passive systems. The distance from equilibrium, measured by the violation of equilibrium fluctuation-dissipation and the amount of entropy production, decreases with increasing inertia and trap strength. We present detailed ‘phase diagrams’ using kurtosis of velocity and position, showing possibilities of re-entrance to equilibrium.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"56 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Laser powered dissipative quantum batteries in atom-cavity QED","authors":"Zamir Beleño, Marcelo F Santos, Felipe Barra","doi":"10.1088/1367-2630/ad6348","DOIUrl":"https://doi.org/10.1088/1367-2630/ad6348","url":null,"abstract":"The interaction of a three-level atom with the electromagnetic field of a quantum cavity in the presence of a laser field presents a rich behavior in the dispersive regime that we exploit to discuss two quantum batteries. In the first setup, we consider a single three-level atom interacting sequentially with many cavities, each in a thermal state. We show that under this process, the atom converges towards an equilibrium state that displays population inversion. In the second setup, a stream of atoms in a thermal state interacts sequentially with a single cavity initially in a thermal state at the same temperature as the atoms. We show that the cavity’s energy increases continuously as the stream of atoms continues to cross, and the cavity does not reach an equilibrium state. After many atoms have traveled, the cavity’s state becomes active, storing extractable energy that increases in proportion to the work done by the laser. However, the same dynamics may involve only two cavity levels in an interesting limit called the highly selective regime. In that regime, the cavity reaches an equilibrium state similar to the one of the atom in the first scenario. The charging process we propose is robust. We discuss its thermodynamics and evaluate the energy supplied by the laser, the energy stored in the battery, and, thus, the device’s efficiency. We also analyze the role of damping.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"207 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}