被困活性粒子的精确力矩:惯性对稳态特性和再入口的影响

IF 2.8 2区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Manish Patel, Debasish Chaudhuri
{"title":"被困活性粒子的精确力矩:惯性对稳态特性和再入口的影响","authors":"Manish Patel, Debasish Chaudhuri","doi":"10.1088/1367-2630/ad6349","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the behavior of inertial active Brownian particles in a <italic toggle=\"yes\">d</italic>-dimensional harmonic trap in the presence of translational diffusion. While the solution of the Fokker–Planck equation is generally challenging, it can be utilized to compute the exact time evolution of all time-dependent dynamical moments using a Laplace transform approach. We present the explicit form for several moments of position and velocity in <italic toggle=\"yes\">d</italic>-dimensions. An interplay of time scales assures that the effective diffusivity and steady-state kinetic temperature depend on both inertia and trap strength, unlike passive systems. The distance from equilibrium, measured by the violation of equilibrium fluctuation-dissipation and the amount of entropy production, decreases with increasing inertia and trap strength. We present detailed ‘phase diagrams’ using kurtosis of velocity and position, showing possibilities of re-entrance to equilibrium.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"56 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact moments for trapped active particles: inertial impact on steady-state properties and re-entrance\",\"authors\":\"Manish Patel, Debasish Chaudhuri\",\"doi\":\"10.1088/1367-2630/ad6349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigate the behavior of inertial active Brownian particles in a <italic toggle=\\\"yes\\\">d</italic>-dimensional harmonic trap in the presence of translational diffusion. While the solution of the Fokker–Planck equation is generally challenging, it can be utilized to compute the exact time evolution of all time-dependent dynamical moments using a Laplace transform approach. We present the explicit form for several moments of position and velocity in <italic toggle=\\\"yes\\\">d</italic>-dimensions. An interplay of time scales assures that the effective diffusivity and steady-state kinetic temperature depend on both inertia and trap strength, unlike passive systems. The distance from equilibrium, measured by the violation of equilibrium fluctuation-dissipation and the amount of entropy production, decreases with increasing inertia and trap strength. We present detailed ‘phase diagrams’ using kurtosis of velocity and position, showing possibilities of re-entrance to equilibrium.\",\"PeriodicalId\":19181,\"journal\":{\"name\":\"New Journal of Physics\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1367-2630/ad6349\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad6349","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们研究了存在平移扩散的 d 维谐波陷阱中惯性活动布朗粒子的行为。虽然福克-普朗克方程的求解通常具有挑战性,但我们可以利用拉普拉斯变换方法计算所有与时间相关的动态时刻的精确时间演化。我们介绍了 d 维中位置和速度的几个时刻的显式形式。与被动系统不同的是,时间尺度的相互作用确保了有效扩散率和稳态动力学温度同时取决于惯性和陷阱强度。随着惯性和陷阱强度的增加,以违反平衡的波动-耗散和熵产生量来衡量的平衡距离会减小。我们利用速度和位置的峰度提出了详细的 "相图",显示了重新进入平衡的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact moments for trapped active particles: inertial impact on steady-state properties and re-entrance
In this study, we investigate the behavior of inertial active Brownian particles in a d-dimensional harmonic trap in the presence of translational diffusion. While the solution of the Fokker–Planck equation is generally challenging, it can be utilized to compute the exact time evolution of all time-dependent dynamical moments using a Laplace transform approach. We present the explicit form for several moments of position and velocity in d-dimensions. An interplay of time scales assures that the effective diffusivity and steady-state kinetic temperature depend on both inertia and trap strength, unlike passive systems. The distance from equilibrium, measured by the violation of equilibrium fluctuation-dissipation and the amount of entropy production, decreases with increasing inertia and trap strength. We present detailed ‘phase diagrams’ using kurtosis of velocity and position, showing possibilities of re-entrance to equilibrium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Physics
New Journal of Physics 物理-物理:综合
CiteScore
6.20
自引率
3.00%
发文量
504
审稿时长
3.1 months
期刊介绍: New Journal of Physics publishes across the whole of physics, encompassing pure, applied, theoretical and experimental research, as well as interdisciplinary topics where physics forms the central theme. All content is permanently free to read and the journal is funded by an article publication charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信