Nicola Messina, Matteo Stefanini, M. Cornia, L. Baraldi, F. Falchi, G. Amato, R. Cucchiara
{"title":"ALADIN: Distilling Fine-grained Alignment Scores for Efficient Image-Text Matching and Retrieval","authors":"Nicola Messina, Matteo Stefanini, M. Cornia, L. Baraldi, F. Falchi, G. Amato, R. Cucchiara","doi":"10.1145/3549555.3549576","DOIUrl":"https://doi.org/10.1145/3549555.3549576","url":null,"abstract":"Image-text matching is gaining a leading role among tasks involving the joint understanding of vision and language. In literature, this task is often used as a pre-training objective to forge architectures able to jointly deal with images and texts. Nonetheless, it has a direct downstream application: cross-modal retrieval, which consists in finding images related to a given query text or vice-versa. Solving this task is of critical importance in cross-modal search engines. Many recent methods proposed effective solutions to the image-text matching problem, mostly using recent large vision-language (VL) Transformer networks. However, these models are often computationally expensive, especially at inference time. This prevents their adoption in large-scale cross-modal retrieval scenarios, where results should be provided to the user almost instantaneously. In this paper, we propose to fill in the gap between effectiveness and efficiency by proposing an ALign And DIstill Network (ALADIN). ALADIN first produces high-effective scores by aligning at fine-grained level images and texts. Then, it learns a shared embedding space – where an efficient kNN search can be performed – by distilling the relevance scores obtained from the fine-grained alignments. We obtained remarkable results on MS-COCO, showing that our method can compete with state-of-the-art VL Transformers while being almost 90 times faster. The code for reproducing our results is available at https://github.com/mesnico/ALADIN.","PeriodicalId":191591,"journal":{"name":"Proceedings of the 19th International Conference on Content-based Multimedia Indexing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129028347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sara Sarto, Marcella Cornia, L. Baraldi, R. Cucchiara
{"title":"Retrieval-Augmented Transformer for Image Captioning","authors":"Sara Sarto, Marcella Cornia, L. Baraldi, R. Cucchiara","doi":"10.1145/3549555.3549585","DOIUrl":"https://doi.org/10.1145/3549555.3549585","url":null,"abstract":"Image captioning models aim at connecting Vision and Language by providing natural language descriptions of input images. In the past few years, the task has been tackled by learning parametric models and proposing visual feature extraction advancements or by modeling better multi-modal connections. In this paper, we investigate the development of an image captioning approach with a kNN memory, with which knowledge can be retrieved from an external corpus to aid the generation process. Our architecture combines a knowledge retriever based on visual similarities, a differentiable encoder, and a kNN-augmented attention layer to predict tokens based on the past context and on text retrieved from the external memory. Experimental results, conducted on the COCO dataset, demonstrate that employing an explicit external memory can aid the generation process and increase caption quality. Our work opens up new avenues for improving image captioning models at larger scale.","PeriodicalId":191591,"journal":{"name":"Proceedings of the 19th International Conference on Content-based Multimedia Indexing","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115883045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriele Lagani, D. Bacciu, C. Gallicchio, F. Falchi, C. Gennaro, G. Amato
{"title":"Deep Features for CBIR with Scarce Data using Hebbian Learning","authors":"Gabriele Lagani, D. Bacciu, C. Gallicchio, F. Falchi, C. Gennaro, G. Amato","doi":"10.1145/3549555.3549587","DOIUrl":"https://doi.org/10.1145/3549555.3549587","url":null,"abstract":"Features extracted from Deep Neural Networks (DNNs) have proven to be very effective in the context of Content Based Image Retrieval (CBIR). Recently, biologically inspired Hebbian learning algorithms have shown promises for DNN training. In this contribution, we study the performance of such algorithms in the development of feature extractors for CBIR tasks. Specifically, we consider a semi-supervised learning strategy in two steps: first, an unsupervised pre-training stage is performed using Hebbian learning on the image dataset; second, the network is fine-tuned using supervised Stochastic Gradient Descent (SGD) training. For the unsupervised pre-training stage, we explore the nonlinear Hebbian Principal Component Analysis (HPCA) learning rule. For the supervised fine-tuning stage, we assume sample efficiency scenarios, in which the amount of labeled samples is just a small fraction of the whole dataset. Our experimental analysis, conducted on the CIFAR10 and CIFAR100 datasets, shows that, when few labeled samples are available, our Hebbian approach provides relevant improvements compared to various alternative methods.","PeriodicalId":191591,"journal":{"name":"Proceedings of the 19th International Conference on Content-based Multimedia Indexing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114858693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Pham, D. Ngo, Phu X. Nguyen, Hoang Van Truong, Alexander Schindler
{"title":"An Audio-Visual Dataset and Deep Learning Frameworks for Crowded Scene Classification","authors":"L. Pham, D. Ngo, Phu X. Nguyen, Hoang Van Truong, Alexander Schindler","doi":"10.1145/3549555.3549568","DOIUrl":"https://doi.org/10.1145/3549555.3549568","url":null,"abstract":"In this paper, we present the task of audio-visual scene classification (SC) where input videos are classified into one of five real-life crowded scenes: ‘Riot’, ‘Noise-Street’, ‘Firework-Event’, ‘Music-Event’, and ‘Sport-Atmosphere’. To this end, we firstly collect an audio-visual dataset (videos) of these five crowded contexts from Youtube (in-the-wild scenes). Then, a wide range of deep learning classification models are proposed to train either audio or visual input data independently. Finally, results obtained from high-performance models are fused to achieve the best accuracy score. Our experimental results indicate that audio and visual input factors independently contribute to the SC task’s performance. Notably, an ensemble of deep learning models can achieve the best accuracy of 95.7%.","PeriodicalId":191591,"journal":{"name":"Proceedings of the 19th International Conference on Content-based Multimedia Indexing","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127150261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proceedings of the 19th International Conference on Content-based Multimedia Indexing","authors":"","doi":"10.1145/3549555","DOIUrl":"https://doi.org/10.1145/3549555","url":null,"abstract":"","PeriodicalId":191591,"journal":{"name":"Proceedings of the 19th International Conference on Content-based Multimedia Indexing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116822803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}