Deep Features for CBIR with Scarce Data using Hebbian Learning

Gabriele Lagani, D. Bacciu, C. Gallicchio, F. Falchi, C. Gennaro, G. Amato
{"title":"Deep Features for CBIR with Scarce Data using Hebbian Learning","authors":"Gabriele Lagani, D. Bacciu, C. Gallicchio, F. Falchi, C. Gennaro, G. Amato","doi":"10.1145/3549555.3549587","DOIUrl":null,"url":null,"abstract":"Features extracted from Deep Neural Networks (DNNs) have proven to be very effective in the context of Content Based Image Retrieval (CBIR). Recently, biologically inspired Hebbian learning algorithms have shown promises for DNN training. In this contribution, we study the performance of such algorithms in the development of feature extractors for CBIR tasks. Specifically, we consider a semi-supervised learning strategy in two steps: first, an unsupervised pre-training stage is performed using Hebbian learning on the image dataset; second, the network is fine-tuned using supervised Stochastic Gradient Descent (SGD) training. For the unsupervised pre-training stage, we explore the nonlinear Hebbian Principal Component Analysis (HPCA) learning rule. For the supervised fine-tuning stage, we assume sample efficiency scenarios, in which the amount of labeled samples is just a small fraction of the whole dataset. Our experimental analysis, conducted on the CIFAR10 and CIFAR100 datasets, shows that, when few labeled samples are available, our Hebbian approach provides relevant improvements compared to various alternative methods.","PeriodicalId":191591,"journal":{"name":"Proceedings of the 19th International Conference on Content-based Multimedia Indexing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Content-based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3549555.3549587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Features extracted from Deep Neural Networks (DNNs) have proven to be very effective in the context of Content Based Image Retrieval (CBIR). Recently, biologically inspired Hebbian learning algorithms have shown promises for DNN training. In this contribution, we study the performance of such algorithms in the development of feature extractors for CBIR tasks. Specifically, we consider a semi-supervised learning strategy in two steps: first, an unsupervised pre-training stage is performed using Hebbian learning on the image dataset; second, the network is fine-tuned using supervised Stochastic Gradient Descent (SGD) training. For the unsupervised pre-training stage, we explore the nonlinear Hebbian Principal Component Analysis (HPCA) learning rule. For the supervised fine-tuning stage, we assume sample efficiency scenarios, in which the amount of labeled samples is just a small fraction of the whole dataset. Our experimental analysis, conducted on the CIFAR10 and CIFAR100 datasets, shows that, when few labeled samples are available, our Hebbian approach provides relevant improvements compared to various alternative methods.
基于Hebbian学习的稀缺数据CBIR深度特征
从深度神经网络(dnn)中提取的特征在基于内容的图像检索(CBIR)中是非常有效的。最近,受生物学启发的Hebbian学习算法显示出深度神经网络训练的前景。在本文中,我们研究了这些算法在开发用于CBIR任务的特征提取器中的性能。具体来说,我们分两步考虑半监督学习策略:首先,在图像数据集上使用Hebbian学习执行无监督预训练阶段;其次,使用监督随机梯度下降(SGD)训练对网络进行微调。对于无监督预训练阶段,我们探索了非线性Hebbian主成分分析(HPCA)学习规则。对于监督微调阶段,我们假设样本效率场景,其中标记样本的数量只是整个数据集的一小部分。我们在CIFAR10和CIFAR100数据集上进行的实验分析表明,当可用的标记样本较少时,与各种替代方法相比,我们的Hebbian方法提供了相关的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信