Neuroimmunomodulation最新文献

筛选
英文 中文
Hypothalamic-Pituitary Axis Function and Adrenal Insufficiency in COVID-19 Patients. 新冠肺炎患者的下丘脑-垂体轴功能和肾上腺功能不全。
IF 2.2 4区 医学
Neuroimmunomodulation Pub Date : 2023-01-01 Epub Date: 2023-09-13 DOI: 10.1159/000534025
Emre Durcan, Aysa Hacioglu, Zuleyha Karaca, Kursad Unluhizarci, Mustafa Sait Gonen, Fahrettin Kelestimur
{"title":"Hypothalamic-Pituitary Axis Function and Adrenal Insufficiency in COVID-19 Patients.","authors":"Emre Durcan, Aysa Hacioglu, Zuleyha Karaca, Kursad Unluhizarci, Mustafa Sait Gonen, Fahrettin Kelestimur","doi":"10.1159/000534025","DOIUrl":"10.1159/000534025","url":null,"abstract":"<p><p>The outbreak of COVID-19 has affected more than half a billion people worldwide and caused more than 6 million deaths since 2019. The responsible virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), primarily affects the lungs, but it has multisystemic effects. It is well known that dysfunction of multiple endocrine organs may occur during or after COVID-19. Impairment of the hypothalamic-pituitary-adrenal (HPA) axis is of utmost importance as it may lead to death if went undiagnosed. SARS-CoV-2 may cause both primary and secondary adrenal insufficiencies (AIs). The clinical manifestations of AI are generally non-specific and might be attributed to the complications caused by the infection itself. The underlying pathogenetic mechanisms were explained by the immunogenic, vascular effects of the infection or the direct effects of the virus. The diagnosis of AI in critically ill patients with COVID-19 is not straightforward. There is lack of consensus on the cut-off values of basal serum cortisol levels and stimulation tests during the disease. Here we review the literature with a special regard on the evaluation of the HPA axis in patients with COVID-19. We conclude that the possibility of AI should always be kept in mind when dealing with patients with COVID-19, and repeated basal cortisol measurements and the ACTH stimulation test results could guide the clinician during the diagnostic process.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":" ","pages":"215-225"},"PeriodicalIF":2.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614450/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10222297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Statement 撤销声明
4区 医学
Neuroimmunomodulation Pub Date : 2023-01-01 DOI: 10.1159/000531807
{"title":"Retraction Statement","authors":"","doi":"10.1159/000531807","DOIUrl":"https://doi.org/10.1159/000531807","url":null,"abstract":"","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136257144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myrtenol Ameliorates Recognition Memories' Impairment and Anxiety-Like Behaviors Induced by Asthma by Mitigating Hippocampal Inflammation and Oxidative Stress in Rats. 通过减轻大鼠海马炎症和氧化应激减轻哮喘引起的识别记忆障碍和焦虑行为
IF 2.2 4区 医学
Neuroimmunomodulation Pub Date : 2023-01-01 Epub Date: 2023-01-19 DOI: 10.1159/000528626
Mohammad Abbas Bejeshk, Amir Hashem Aminizadeh, Elham Jafari, Sina Motamedi, Iman Zangiabadi, Ahmad Ghasemi, Mazyar Fathi, Akram Nezhadi, Faezeh Akhgarandouz, Fatemeh Bejeshk, Leila Mohammadi, Fatemeh Mohammadi, Mohammad Amin Rajizadeh
{"title":"Myrtenol Ameliorates Recognition Memories' Impairment and Anxiety-Like Behaviors Induced by Asthma by Mitigating Hippocampal Inflammation and Oxidative Stress in Rats.","authors":"Mohammad Abbas Bejeshk, Amir Hashem Aminizadeh, Elham Jafari, Sina Motamedi, Iman Zangiabadi, Ahmad Ghasemi, Mazyar Fathi, Akram Nezhadi, Faezeh Akhgarandouz, Fatemeh Bejeshk, Leila Mohammadi, Fatemeh Mohammadi, Mohammad Amin Rajizadeh","doi":"10.1159/000528626","DOIUrl":"10.1159/000528626","url":null,"abstract":"<p><strong>Introduction: </strong>Asthma is related to neurochemical alterations which affect brain functions and lead to anxiety and cognitive dysfunctions. Myrtenol has sparked considerable interest due to its pharmacological effects, especially for the remediation of chronic disorders. Thus, the present research was designed to evaluate the impacts of myrtenol on anxiety-like behaviors, cognitive declines, inflammation, and oxidative stress in the hippocampus of asthmatic rats.</p><p><strong>Methods: </strong>Rats were allocated to five groups: control, asthma, asthma/vehicle, asthma/myrtenol, and asthma/budesonide. Asthma was elicited in the rats by ovalbumin, and the animals were then exposed to myrtenol inhalation. Anxiety-like behavior and memory were assessed by elevated plus maze (EPM) and novel object and location recognition tests. Interleukins (interleukin-6, -17, and -10), tumor necrosis factor α (TNF-α), and oxidative stress biomarkers such as malondialdehyde (MDA), superoxide dismutase (SOD), Glutathione peroxidase (GPX), and total antioxidant capacity (TAC) in the hippocampus were assessed by the ELISA method.</p><p><strong>Results: </strong>The levels of IL-6, IL-17, TNF-α, and MDA decreased, but GPX, SOD, and TAC levels increased in the hippocampus of asthmatic animals due to myrtenol inhalation.</p><p><strong>Conclusion: </strong>Myrtenol diminished asthma-induced anxiety-like behaviors and cognitive deficits in asthmatic rats; these effects might have been typically mediated by a reduction in inflammation and oxidative stress.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":"30 1","pages":"42-54"},"PeriodicalIF":2.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10548859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autonomic Regulation of Inflammation in Conscious Animals. 有意识动物的自律神经对炎症的调节
IF 2.2 4区 医学
Neuroimmunomodulation Pub Date : 2023-01-01 Epub Date: 2023-05-05 DOI: 10.1159/000530908
Helio Cesar Salgado, Fernanda Brognara, Aline Barbosa Ribeiro, Renata Maria Lataro, Jaci Airton Castania, Luis Ulloa, Alexandre Kanashiro
{"title":"Autonomic Regulation of Inflammation in Conscious Animals.","authors":"Helio Cesar Salgado, Fernanda Brognara, Aline Barbosa Ribeiro, Renata Maria Lataro, Jaci Airton Castania, Luis Ulloa, Alexandre Kanashiro","doi":"10.1159/000530908","DOIUrl":"10.1159/000530908","url":null,"abstract":"<p><p>Bioelectronic medicine is a novel field in modern medicine based on the specific neuronal stimulation to control organ function, cardiovascular, and immune homeostasis. However, most studies addressing neuromodulation of the immune system have been conducted on anesthetized animals, which can affect the nervous system and neuromodulation. Here, we review recent studies involving conscious experimental rodents (rats and mice) to better understand the functional organization of neural control of immune homeostasis. We highlight typical experimental models of cardiovascular regulation, such as electrical activation of the aortic depressor nerve or the carotid sinus nerve, bilateral carotid occlusion, the Bezold-Jarisch reflex, and intravenous administration of the bacterial endotoxin lipopolysaccharide. These models have been used to investigate the relationship between neuromodulation of the cardiovascular and immune systems in conscious rodents (rats and mice). These studies provide critical information about the neuromodulation of the immune system, particularly the role of the autonomic nervous system, i.e., the sympathetic and parasympathetic branches acting both centrally (hypothalamus, nucleus ambiguus, nucleus tractus solitarius, caudal ventrolateral medulla, and rostral ventrolateral medulla), and peripherally (particularly spleen and adrenal medulla). Overall, the studies in conscious experimental models have certainly highlighted to the reader how the methodological approaches used to investigate cardiovascular reflexes in conscious rodents (rats and mice) can also be valuable for investigating the neural mechanisms involved in inflammatory responses. The reviewed studies have clinical implications for future therapeutic approaches of bioelectronic modulation of the nervous system to control organ function and physiological homeostasis in conscious physiology.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":" ","pages":"102-112"},"PeriodicalIF":2.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9524166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic Stress Exacerbates Hyperglycemia-Induced Affective Symptoms in Male Mice. 慢性应激加重雄性小鼠高血糖引起的情感症状。
IF 2.2 4区 医学
Neuroimmunomodulation Pub Date : 2023-01-01 Epub Date: 2023-10-18 DOI: 10.1159/000534669
Riley G McCready, Kayla R Gilley, Laura E Kusumo, Grace M Hall, Elisabeth G Vichaya
{"title":"Chronic Stress Exacerbates Hyperglycemia-Induced Affective Symptoms in Male Mice.","authors":"Riley G McCready, Kayla R Gilley, Laura E Kusumo, Grace M Hall, Elisabeth G Vichaya","doi":"10.1159/000534669","DOIUrl":"10.1159/000534669","url":null,"abstract":"<p><strong>Introduction: </strong>Among chronically ill populations, affective disorders remain underdiagnosed and undertreated. A high degree of comorbidity exists between diabetes and affective disorders, particularly depression and anxiety. The mechanisms underlying stress-induced affective dysregulation are likely distinct from those induced by diabetes. A direct comparison between stress- and hyperglycemia-induced affective dysregulation could provide insight into distinct mechanistic targets for depression/anxiety associated with these different conditions.</p><p><strong>Methods: </strong>To this end, the present study used male C57BL/6J mice to compare the independent and combined behavioral and neuroinflammatory effects of two models: (1) unpredictable chronic mild stress and (2) pharmacologically induced hyperglycemia.</p><p><strong>Results: </strong>Streptozotocin-induced hyperglycemia was associated with a set of behavioral changes reflective of the neurovegetative symptoms of depression (i.e., reduced open field activity, reduced grooming, increased immobility in the forced swim task, and decreased marble burying), increased hippocampal Bdnf and Tnf expression, and elevations in frontal cortex Il1b expression. Our chronic stress protocol produced alterations in anxiety-like behavior and decreased frontal cortex Il1b expression.</p><p><strong>Discussion: </strong>While the combination of chronic stress and hyperglycemia produced limited additive effects, their combination exacerbated total symptom burden. Overall, the data indicate that stress and hyperglycemia induce different symptom profiles via distinct mechanisms.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":" ","pages":"302-314"},"PeriodicalIF":2.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641805/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49680284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcrocetin Meglumine Salt Inhibits Spinal Glial Cell-Mediated Proinflammatory Cytokines and Attenuates Complete Freund's Adjuvant-Induced Inflammatory Pain. Transrocetin葡糖胺盐抑制脊髓胶质细胞介导的促炎细胞因子,并减轻完全弗氏佐剂诱导的炎症疼痛。
IF 2.2 4区 医学
Neuroimmunomodulation Pub Date : 2023-01-01 Epub Date: 2023-10-27 DOI: 10.1159/000534607
Qing Qiao, Dandan Yao, Yongjie Wang, Shuxia Zhang, Gang Chen
{"title":"Transcrocetin Meglumine Salt Inhibits Spinal Glial Cell-Mediated Proinflammatory Cytokines and Attenuates Complete Freund's Adjuvant-Induced Inflammatory Pain.","authors":"Qing Qiao, Dandan Yao, Yongjie Wang, Shuxia Zhang, Gang Chen","doi":"10.1159/000534607","DOIUrl":"10.1159/000534607","url":null,"abstract":"<p><strong>Introduction: </strong>Inflammatory pain is a significant global clinical challenge that involves both unpleasant sensory and emotional experiences. The treatment of pain is imminent, and we are committed to seeking new analgesics for pain relief. Transcrocetin meglumine salt (TCMS), a saffron metabolite derived from the crocin apocarotenoids, has exhibited the ability to cross the blood-brain barrier and exert neuroprotective effects. In this study, we aimed to investigate whether TCMS could ameliorate complete Freund's adjuvant (CFA)-induced inflammatory pain in mice and elucidate its underlying mechanisms.</p><p><strong>Methods: </strong>Here, we established an inflammatory pain model in mice by injecting CFA into the left hind paw. Three days later, we administered intraperitoneal injections of TCMS (10 mg/kg) or saline to the animals. We examined mechanical allodynia, thermal hypersensitivity, and anxiety behavior. Furthermore, the activation of glial cells and proinflammatory cytokines in the spinal cord were detected.</p><p><strong>Results: </strong>Our results showed that TCMS significantly reversed the mechanical allodynia and thermal hypersensitivity in the CFA-injected mice. Furthermore, TCMS administration effectively inhibited the activation of microglia and astrocytes in the spinal cord induced by CFA. Additionally, TCMS suppressed the production and release of spinal proinflammatory cytokines, including TNF-α, IL-1β, and IL-6, in CFA-injected mice.</p><p><strong>Conclusion: </strong>Taken together, our findings demonstrate that TCMS holds promise as an innovative analgesic due to its ability to ameliorate inflammatory reactions.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":" ","pages":"315-324"},"PeriodicalIF":2.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659006/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71413278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association between the Ile164 β2 Adrenergic Receptor Polymorphism and Fatigue in Patients with Rheumatoid Arthritis. Ile164 β2肾上腺素能受体多态性与类风湿关节炎患者疲劳之间的关系
IF 2.2 4区 医学
Neuroimmunomodulation Pub Date : 2023-01-01 Epub Date: 2023-04-21 DOI: 10.1159/000528206
Julian Philipp, Christoph G Baerwald, Olga Seifert
{"title":"Association between the Ile164 β2 Adrenergic Receptor Polymorphism and Fatigue in Patients with Rheumatoid Arthritis.","authors":"Julian Philipp, Christoph G Baerwald, Olga Seifert","doi":"10.1159/000528206","DOIUrl":"10.1159/000528206","url":null,"abstract":"<p><strong>Introduction: </strong>In the present work, the frequency of inherited polymorphisms of the beta 2 adrenergic receptor (β2AR) gene and their association with fatigue in patients with rheumatoid arthritis (RA) was examined.</p><p><strong>Methods: </strong>An allele-specific polymerase chain reaction was used to determine the common variants of the β2AR at position 16, 27, and 164 in 92 German RA outpatients. Health Assessment Questionnaire (HAQ-DI), Beck Depression Inventory (BDI), Perceived Stress Questionnaire (PSQ-30), Multidimensional Fatigue Inventory (MFI-20) were utilized.</p><p><strong>Results: </strong>34.7% of German RA patients were diagnosed with associated fatigue. Fatigued patients were more likely to carry the Ile allele at position 164 (OR 7.33, 95% CI 1.09-59.8, p = 0.049). Comparing these risk factors' contribution to different fatigue dimensions revealed that Ile164 carriers only had significantly higher MFI-20 mean values for general fatigue (p = 0.014) while the clinical difference among other MFI subscales was the largest for mental fatigue (carrier: 8.23, SD: 4.22, noncarrier: 5.67, SD: 1.56, p = 0.089, Cohen's d = 0.629). Disease activity, perceived stress, and depression were also associated with fatigue with higher mean values for DAS28CRP (p = 0.038), PSQ (p &lt; 0.001), and BDI-II (p &lt; 0.001) in fatigued patients. Physical fatigue was correlated with disease activity (p = 0.009) and depression (p = 0.001) while mental fatigue showed associations with depression (p = 0.001) and perceived stress (p = 0.028).</p><p><strong>Conclusion: </strong>The discovery study indicates that the Ile164 polymorphism might in contrast to other β2AR polymorphisms affect fatigue levels in RA patients. This association was observed especially with mental fatigue. Further replication studies are warranted to determine further role of β2AR polymorphisms in RA patients.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":"30 1","pages":"93-101"},"PeriodicalIF":2.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9792054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic Benefits of Melatonin against COVID-19. 褪黑激素对新冠肺炎的治疗效果。
IF 2.2 4区 医学
Neuroimmunomodulation Pub Date : 2023-01-01 Epub Date: 2023-06-19 DOI: 10.1159/000531550
Muhammad Mubashshir, Nabeel Ahmad, Tripti Negi, Renu Rawal, Nirjara Singhvi, Hina Khatoon, Vijya Laxmi, Om Dubey, Renu Bala Sharma, Ganga Negi, Mohd Ovais
{"title":"Therapeutic Benefits of Melatonin against COVID-19.","authors":"Muhammad Mubashshir, Nabeel Ahmad, Tripti Negi, Renu Rawal, Nirjara Singhvi, Hina Khatoon, Vijya Laxmi, Om Dubey, Renu Bala Sharma, Ganga Negi, Mohd Ovais","doi":"10.1159/000531550","DOIUrl":"10.1159/000531550","url":null,"abstract":"<p><p>The assumption of the pineal hormone melatonin as a therapeutic use for COVID-19-affected people seems promising. Its intake has shown significant improvement in the patients' conditions. Higher melatonin titers in children may provide a protective shield against this disease. The hormone melatonin works as an anti-inflammatory, antioxidant, immunomodulator, and strategically slows down the cytokine release which is observed in the COVID-19 disease, thereby improving the overall health of afflicted patients. The medical community is expected shortly to use remedial attributes like anti-inflammatory, antioxidant, antivirals, etc., of melatonin in the successful prevention and cure of COVID-19 morbidity. Thus, the administration of melatonin seems auspicious in the cure and prevention of this COVID-19 fatality. Moreover, melatonin does not seem to reduce the efficiency of approved vaccines against the SARS-CoV-2 virus. Melatonin increases the production of inflammatory cytokines and Th1 and enhances both humoral and cell-mediated responses. Through the enhanced humoral immunity, melatonin exhibits antiviral activities by suppressing multiple inflammatory products such as IL-6, IL1β, and tumor necrosis factor α, which are immediately released during lung injury of severe COVID-19. Hence, the novel use of melatonin along with other antivirals as an early treatment option against COVID-19 infection is suggested. Here, we have chalked out the invasion mechanisms and appropriate implications of the latest findings concerned with melatonin against the virus SARS-CoV-2. Nevertheless, within the setting of a clinical intervention, the promising compounds must go through a series of studies before their recommendation. In the clinical field, this is done in a time-ordered sequence, in line with the phase label affixed to proper protocol of trials: phase I-phase II and the final phase III. Nevertheless, while medical recommendations can only be made on the basis of reassuring evidence, there are still three issues worth considering before implementation: representativeness, validity, and lastly generalizability.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":" ","pages":"196-205"},"PeriodicalIF":2.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9663447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of Galectin-3 in a Rat Model of Epilepsy and Kainate-Activated BV2 Cells Limits Microglial Activation Through the NLRP3/Pyroptosis Pathway. 癫痫大鼠模型中半乳糖凝集素-3的抑制和红藻氨酸激活的BV-2细胞通过NLRP3/焦下垂途径限制小胶质细胞的激活。
IF 2.2 4区 医学
Neuroimmunomodulation Pub Date : 2023-01-01 Epub Date: 2023-11-03 DOI: 10.1159/000534833
Weiwei Sun, Ying Hao, Chunxiang Li, Yuanyuan Zhao, Haishao Yu, Lin Wang
{"title":"Inhibition of Galectin-3 in a Rat Model of Epilepsy and Kainate-Activated BV2 Cells Limits Microglial Activation Through the NLRP3/Pyroptosis Pathway.","authors":"Weiwei Sun, Ying Hao, Chunxiang Li, Yuanyuan Zhao, Haishao Yu, Lin Wang","doi":"10.1159/000534833","DOIUrl":"10.1159/000534833","url":null,"abstract":"<p><strong>Introduction: </strong>This study aimed to investigate the possible role of galectin-3 in epilepsy and further explore its underlying mechanisms.</p><p><strong>Methods: </strong>Sprague-Dawley rats were intraperitoneally injected with 30 mg/kg pilocarpine to induce an animal model of epilepsy. To inhibit galectin-3, the epilepsy model of rats was intraperitoneally injected with TD139. The severity of the seizure was graded according to the Racine score. The pathological changes in hippocampal CA1 regions were observed by hematoxylin and eosin and Nissl staining. Enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and Western blot were used to detect the levels of cytokines and pyroptosis-related factors. The in vitro effects of galectin-3 were confirmed on BV2 cells and rat primary microglia by transfection with lentivirus vectors carrying Lgals3 shRNA or by treatment with TD139.</p><p><strong>Results: </strong>A higher expression of galectin-3 was observed in the hippocampal CA1 regions of epilepsy rats than in sham rats. Inhibition of galectin-3 by administration of TD139 improved the severity of the seizure, hippocampal damage, and neuron loss. TD139 administration suppressed the expression of NLRP3, ASC, c-caspase-1, and GSDMD-N, and reduced the levels of cytokines. In kainic acid-treated microglia, Lgals3 shRNA or TD139 significantly inhibited Iba1 expression and limited NLRP3/pyroptosis-triggered inflammation.</p><p><strong>Conclusion: </strong>Galectin-3 activates the NLRP3/pyroptosis signaling pathway to promote microglial activation and neuroinflammation during epilepsy disease progression.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":" ","pages":"325-337"},"PeriodicalIF":2.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71484237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acute Inhibition of Inflammation Mediated by Sympathetic Nerves: The Inflammatory Reflex. 交感神经介导的急性炎症抑制:炎症反射
IF 2.2 4区 医学
Neuroimmunomodulation Pub Date : 2023-01-01 Epub Date: 2023-06-09 DOI: 10.1159/000531469
Alessandra Occhinegro, Robin M McAllen, Michael J McKinley, Davide Martelli
{"title":"Acute Inhibition of Inflammation Mediated by Sympathetic Nerves: The Inflammatory Reflex.","authors":"Alessandra Occhinegro, Robin M McAllen, Michael J McKinley, Davide Martelli","doi":"10.1159/000531469","DOIUrl":"10.1159/000531469","url":null,"abstract":"<p><p>In this review, we will try to convince the readers that the immune system is controlled by an endogenous neural reflex, termed inflammatory reflex, that inhibits the acute immune response during the course of a systemic immune challenge. We will analyse here the contribution of different sympathetic nerves as possible efferent arms of the inflammatory reflex. We will discuss the evidence that demonstrates that neither the splenic sympathetic nerves nor the hepatic sympathetic nerves are necessary for the endogenous neural reflex inhibition of inflammation. We will discuss the contribution of the adrenal glands to the reflex control of inflammation, noting that the neurally mediated release of catecholamines in the systemic circulation is responsible for the enhancement of the anti-inflammatory cytokine interleukin 10 (IL-10) but not of the inhibition of the pro-inflammatory cytokine tumour necrosis factor α (TNF). We will conclude by reviewing the evidence that demonstrates that the splanchnic anti-inflammatory pathway, composed by preganglionic and postganglionic sympathetic splanchnic fibres with different target organs, including the spleen and the adrenal glands, is the efferent arm of the inflammatory reflex. During the course of a systemic immune challenge, the splanchnic anti-inflammatory pathway is endogenously activated to inhibit the TNF and enhance the IL-10 response, independently, presumably acting on separate populations of leukocytes.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":" ","pages":"135-142"},"PeriodicalIF":2.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10428141/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10020347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信