{"title":"Current immunotherapies for multiple sclerosis and neuromyelitis optica spectrum disorders: the similarities and differences","authors":"Lujun Zhang, Jingyuan Tian, Bin Li","doi":"10.20517/2347-8659.2019.06","DOIUrl":"https://doi.org/10.20517/2347-8659.2019.06","url":null,"abstract":"Multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) are autoimmune demyelinating diseases of the central nervous system. Neuromyelitis optica was considered a variant of MS until the discovery of NMO-IgG in 2004, which changed our understanding of the pathophysiology of NMOSD. This review focuses on the similarities and differences in the immune treatments of MS and NMOSD.","PeriodicalId":19129,"journal":{"name":"Neuroimmunology and Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45721920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Claudia Montabone, D. Vecchio, S. Vujosevic, S. D. Cillà, R. Cantello
{"title":"Bartonella henselae neuroretinitis in a patient without cat scratch","authors":"Claudia Montabone, D. Vecchio, S. Vujosevic, S. D. Cillà, R. Cantello","doi":"10.20517/2347-8659.2019.09","DOIUrl":"https://doi.org/10.20517/2347-8659.2019.09","url":null,"abstract":"","PeriodicalId":19129,"journal":{"name":"Neuroimmunology and Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42902876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The involvement of anti-neurofascin 155 antibodies in central and peripheral demyelinating diseases","authors":"M. Gonçalves, Y. Fragoso","doi":"10.20517/2347-8659.2019.08","DOIUrl":"https://doi.org/10.20517/2347-8659.2019.08","url":null,"abstract":"","PeriodicalId":19129,"journal":{"name":"Neuroimmunology and Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44463374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Speedy/RINGO: a molecular savior in spinal cord injury-based neurodegeneration?","authors":"Yeşim Kaya, A. Yıldız","doi":"10.20517/2347-8659.2018.70","DOIUrl":"https://doi.org/10.20517/2347-8659.2018.70","url":null,"abstract":"Endogenous or exogenous insults can cause spinal cord injury (SCI), often resulting in the loss of motor, autonomic, sensory and reflex functions. The pathogenesis of SCI comprises two stages. The primary injury stage occurs at the moment of trauma and is characterized by hemorrhage and rapid cell death. The secondary injury stage occurs due to progression of primary damage and is characterized by tissue loss and functional disorder. One of the most important cellular mechanisms underlying secondary injury is glutamate excitotoxicity, which overactivates the calpain protease via excessive Ca influx and induces neuronal apoptosis via p53 induction. Furthermore, Ca influx elicits apoptosis by inducing p53, thus negatively affecting two pathways: the mitogenic extracellular signal-regulated kinase/mitogenactivated protein kinase (ERK/MAPK) pathway and the survival phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway. Speedy/rapid inducer of G2/M progression in oocytes (Speedy/RINGO) is a cell cycle regulatory protein that increases survival of p53-positive mitotic cells by inhibiting the apoptotic machinery. Moreover, this protein elicits p53dependent anti-apoptotic effects on calpain-induced degeneration of primary hippocampal neurons, amyotrophic lateral sclerosis motor neurons, and astrocytes and microglia in spinal cord lesions. The pathophysiology of SCI has not been fully elucidated and this hinders the development of powerful therapeutic strategies. This review focuses on the cellular mechanisms underlying the anti-apoptotic effects of Speedy/RINGO and discusses how this protective function can possibly be exploited to facilitate recovery from SCI. Particular attention is paid to reversal of the negative effects on the ERK/MAPK and PI3K/AKT pathways via induction of p53.","PeriodicalId":19129,"journal":{"name":"Neuroimmunology and Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47794869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microglial activation and polarization after subarachnoid hemorrhage","authors":"Z. Zheng, Kwok Chu George Wong","doi":"10.20517/2347-8659.2018.52","DOIUrl":"https://doi.org/10.20517/2347-8659.2018.52","url":null,"abstract":"Subarachnoid hemorrhage (SAH) is a devastating stroke type, with high mortality and morbidity. The neuroinflammatory response evolves over time from early brain injury to delayed cerebral deterioration. Microglia, the resident immune cells of the central nervous system, respond to the acute brain injury through activation and polarization. Microglia are able to polarize along two pathways, classic M1 and alternative M2, towards tissue injury and tissue repair respectively. The modulation of microglial activation has gained appreciation as a means to prevent the detrimental effects. In this review, we describe the progression of microglial polarization after SAH and summarize the key studies on mediators of microglial activation, including M1 and M2 specific microglial markers, transcription factors and key signaling pathways. Interactions between microglia and other cells are critical in modulating microglial activation and function, which are discussed as well. The preclinical application of microgliadependent treatments is presented, aiming for a better understanding of modulating microglial function and suggesting future investigation for therapeutic approaches.","PeriodicalId":19129,"journal":{"name":"Neuroimmunology and Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45826344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher H Merritt, Matthew A Taylor, Caleb J Yelton, Swapan K Ray
{"title":"Economic impact of traumatic spinal cord injuries in the United States.","authors":"Christopher H Merritt, Matthew A Taylor, Caleb J Yelton, Swapan K Ray","doi":"10.20517/2347-8659.2019.15","DOIUrl":"https://doi.org/10.20517/2347-8659.2019.15","url":null,"abstract":"<p><p>Individuals having sustained traumatic spinal cord injury (TSCI) in the United States are living longer as compared to historical trends, thanks to an ever-evolving understanding of the nature of this injury. Despite this, multiple barriers to care for TSCI patients remain including variations in government-issued veteran insurance, privatized insurance, and among uninsured individuals. The United States alone experiences 12,000 new TSCI cases every year, many of these are found to occur in a growing proportion of elderly individuals. It is crucial to understand both the short-term direct costs as wells as the long-term rehabilitation costs required by these TSCI patients. The lifetime financial burden for those having sustained a TSCI can be immense for patients, insurance companies, and hospital systems alike. Among those with TSCI, re-hospitalization rates are high, leading to increased healthcare resource utilization within this specific patient population. Costs can quickly balloon into hundreds of thousands of dollars and cause a profound financial burden for these patients. This review article seeks to communicate an understanding of the current financial landscape surrounding TSCI patients. The authors will also examine the costs of acute emergency room surgical care such as American spinal injury association grade, hospital length of stay, as well as the timing delay between injury and surgical decompression. Long-term costs associated with TSCI such as rehabilitation, care of secondary comorbidities, and post-injury employment prospects will be examined as well. These costs will be framed from the patient's perspective as well as from both the hospital and insurance company's perspectives. It is hoped a complete understanding as to what makes TSCI such a medically and financially burdensome injury will allow for improved healthcare resource utilization in this population.</p>","PeriodicalId":19129,"journal":{"name":"Neuroimmunology and Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8052100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38886053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Badria Almurshidi, Wayne Carver, Geoff Scott, Swapan K Ray
{"title":"Roles of miRNAs in spinal cord injury and potential therapeutic interventions.","authors":"Badria Almurshidi, Wayne Carver, Geoff Scott, Swapan K Ray","doi":"10.20517/2347-8659.2019.19","DOIUrl":"10.20517/2347-8659.2019.19","url":null,"abstract":"<p><p>Spinal cord injury (SCI) affects approximately 200,000 individuals per year worldwide. There are more than 27 million people worldwide living with long-term disability due to SCI. Historically, it was thought that the central nervous system (CNS) had little ability for regeneration; however, more recent studies have demonstrated potential for repair within the CNS. Because of this, there exists a renewed interest in the discovery of novel approaches to promote regeneration in the CNS including the spinal cord. It is important to know the roles of the microRNAs (miRNAs) in modulation of pathogenesis in SCI and the potentials of the miRNA-based clinical interventions for controlling post-injury symptoms and improving functional recovery. The miRNAs, which are non-coding RNAs with an average of 22 nucleotides in length, are post-transcriptional gene regulators that cause degradation of the target mRNAs and thus negatively control their translation. This review article focuses on current research related to miRNAs and their roles in modulating SCI symptoms, asserting that miRNAs contribute to critical post-SCI molecular processes including neuroplasticity, functional recovery, astrogliosis, neuropathic pain, inflammation, and apoptosis. In particular, miR-96 provides a promising therapeutic opportunity to improve the outcomes of clinical interventions, including the way SCI injuries are evaluated and treated.</p>","PeriodicalId":19129,"journal":{"name":"Neuroimmunology and Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8052101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38886054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}