Neural Regeneration Research最新文献

筛选
英文 中文
The complex effects of miR-146a in the pathogenesis of Alzheimer's disease. miR-146a 在阿尔茨海默病发病机制中的复杂作用。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-05-01 Epub Date: 2024-06-03 DOI: 10.4103/NRR.NRR-D-23-01566
Yunfan Long, Jiajia Liu, Yu Wang, Haidong Guo, Guohong Cui
{"title":"The complex effects of miR-146a in the pathogenesis of Alzheimer's disease.","authors":"Yunfan Long, Jiajia Liu, Yu Wang, Haidong Guo, Guohong Cui","doi":"10.4103/NRR.NRR-D-23-01566","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-23-01566","url":null,"abstract":"<p><p>Alzheimer's disease is a neurodegenerative disorder characterized by cognitive dysfunction and behavioral abnormalities. Neuroinflammatory plaques formed through the extracellular deposition of amyloid-β proteins, as well as neurofibrillary tangles formed by the intracellular deposition of hyperphosphorylated tau proteins, comprise two typical pathological features of Alzheimer's disease. Besides symptomatic treatment, there are no effective therapies for delaying Alzheimer's disease progression. MicroRNAs (miR) are small, non-coding RNAs that negatively regulate gene expression at the transcriptional and translational levels and play important roles in multiple physiological and pathological processes. Indeed, miR-146a, a NF-κB-regulated gene, has been extensively implicated in the development of Alzheimer's disease through several pathways. Research has demonstrated substantial dysregulation of miR-146a both during the initial phases and throughout the progression of this disorder. MiR-146a is believed to reduce amyloid-β deposition and tau protein hyperphosphorylation through the TLR/IRAK1/TRAF6 pathway; however, there is also evidence supporting that it can promote these processes through many other pathways, thus exacerbating the pathological manifestations of Alzheimer's disease. It has been widely reported that miR-146a mediates synaptic dysfunction, mitochondrial dysfunction, and neuronal death by targeting mRNAs encoding synaptic-related proteins, mitochondrial-related proteins, and membrane proteins, as well as other mRNAs. Regarding the impact on glial cells, miR-146a also exhibits differential effects. On one hand, it causes widespread and sustained inflammation through certain pathways, while on the other hand, it can reverse the polarization of astrocytes and microglia, alleviate neuroinflammation, and promote oligodendrocyte progenitor cell differentiation, thus maintaining the normal function of the myelin sheath and exerting a protective effect on neurons. In this review, we provide a comprehensive analysis of the involvement of miR-146a in the pathogenesis of Alzheimer's disease. We aim to elucidate the relationship between miR-146a and the key pathological manifestations of Alzheimer's disease, such as amyloid-β deposition, tau protein hyperphosphorylation, neuronal death, mitochondrial dysfunction, synaptic dysfunction, and glial cell dysfunction, as well as summarize recent relevant studies that have highlighted the potential of miR-146a as a clinical diagnostic marker and therapeutic target for Alzheimer's disease.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"20 5","pages":"1309-1323"},"PeriodicalIF":5.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The burden of upper motor neuron involvement is correlated with the bilateral limb involvement interval in patients with amyotrophic lateral sclerosis: a retrospective observational study. 肌萎缩侧索硬化症患者上运动神经元受累负担与双侧肢体受累间隔相关:一项回顾性观察研究。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-05-01 Epub Date: 2024-03-01 DOI: 10.4103/NRR.NRR-D-23-01359
Jieying Wu, Shan Ye, Xiangyi Liu, Yingsheng Xu, Dongsheng Fan
{"title":"The burden of upper motor neuron involvement is correlated with the bilateral limb involvement interval in patients with amyotrophic lateral sclerosis: a retrospective observational study.","authors":"Jieying Wu, Shan Ye, Xiangyi Liu, Yingsheng Xu, Dongsheng Fan","doi":"10.4103/NRR.NRR-D-23-01359","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-23-01359","url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202505000-00032/figure1/v/2024-07-28T173839Z/r/image-tiff Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons. Early bilateral limb involvement significantly affects patients' daily lives and may lead them to be confined to bed. However, the effect of upper and lower motor neuron impairment and other risk factors on bilateral limb involvement is unclear. To address this issue, we retrospectively collected data from 586 amyotrophic lateral sclerosis patients with limb onset diagnosed at Peking University Third Hospital between January 2020 and May 2022. A univariate analysis revealed no significant differences in the time intervals of spread in different directions between individuals with upper motor neuron-dominant amyotrophic lateral sclerosis and those with classic amyotrophic lateral sclerosis. We used causal directed acyclic graphs for risk factor determination and Cox proportional hazards models to investigate the association between the duration of bilateral limb involvement and clinical baseline characteristics in amyotrophic lateral sclerosis patients. Multiple factor analyses revealed that higher upper motor neuron scores (hazard ratio [HR] = 1.05, 95% confidence interval [CI] = 1.01-1.09, P = 0.018), onset in the left limb (HR = 0.72, 95% CI = 0.58-0.89, P = 0.002), and a horizontal pattern of progression (HR = 0.46, 95% CI = 0.37-0.58, P < 0.001) were risk factors for a shorter interval until bilateral limb involvement. The results demonstrated that a greater degree of upper motor neuron involvement might cause contralateral limb involvement to progress more quickly in limb-onset amyotrophic lateral sclerosis patients. These findings may improve the management of amyotrophic lateral sclerosis patients with limb onset and the prediction of patient prognosis.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"20 5","pages":"1505-1512"},"PeriodicalIF":5.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Translational machinery and translation regulation in axon regeneration. 轴突再生中的翻译机制和翻译调控
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-05-01 Epub Date: 2024-07-10 DOI: 10.4103/NRR.NRR-D-24-00313
Homaira Nawabi, Stephane Belin
{"title":"Translational machinery and translation regulation in axon regeneration.","authors":"Homaira Nawabi, Stephane Belin","doi":"10.4103/NRR.NRR-D-24-00313","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00313","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"20 5","pages":"1392-1394"},"PeriodicalIF":5.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Apolipoprotein A-I binding protein-mediated neuroprotection in glaucomatous neuroinflammation and neurodegeneration. 载脂蛋白 A-I 结合蛋白在青光眼神经炎症和神经变性中介导的神经保护作用
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-05-01 Epub Date: 2024-06-26 DOI: 10.4103/NRR.NRR-D-24-00221
Sinwoo Hwang, Seunghwan Choi, Soo-Ho Choi, Keun-Young Kim, Yury I Miller, Won-Kyu Ju
{"title":"Apolipoprotein A-I binding protein-mediated neuroprotection in glaucomatous neuroinflammation and neurodegeneration.","authors":"Sinwoo Hwang, Seunghwan Choi, Soo-Ho Choi, Keun-Young Kim, Yury I Miller, Won-Kyu Ju","doi":"10.4103/NRR.NRR-D-24-00221","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00221","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"20 5","pages":"1414-1415"},"PeriodicalIF":5.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NECAB family of neuronal calcium-binding proteins in health and disease. 健康和疾病中的神经元钙结合蛋白 NECAB 家族。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-05-01 Epub Date: 2024-06-26 DOI: 10.4103/NRR.NRR-D-24-00094
Diones Bueno, Michael K E Schäfer, Sudena Wang, Michael J Schmeisser, Axel Methner
{"title":"NECAB family of neuronal calcium-binding proteins in health and disease.","authors":"Diones Bueno, Michael K E Schäfer, Sudena Wang, Michael J Schmeisser, Axel Methner","doi":"10.4103/NRR.NRR-D-24-00094","DOIUrl":"10.4103/NRR.NRR-D-24-00094","url":null,"abstract":"<p><p>The N-terminal EF-hand calcium-binding proteins 1-3 (NECAB1-3) constitute a family of predominantly neuronal proteins characterized by the presence of at least one EF-hand calcium-binding domain and a functionally less well characterized C-terminal antibiotic biosynthesis monooxygenase domain. All three family members were initially discovered due to their interactions with other proteins. NECAB1 associates with synaptotagmin-1, a critical neuronal protein involved in membrane trafficking and synaptic vesicle exocytosis. NECAB2 interacts with predominantly striatal G-protein-coupled receptors, while NECAB3 partners with amyloid-β A4 precursor protein-binding family A members 2 and 3, key regulators of amyloid-β production. This demonstrates the capacity of the family for interactions with various classes of proteins. NECAB proteins exhibit distinct subcellular localizations: NECAB1 is found in the nucleus and cytosol, NECAB2 resides in endosomes and the plasma membrane, and NECAB3 is present in the endoplasmic reticulum and Golgi apparatus. The antibiotic biosynthesis monooxygenase domain, an evolutionarily ancient component, is akin to atypical heme oxygenases in prokaryotes but is not well-characterized in vertebrates. Prokaryotic antibiotic biosynthesis monooxygenase domains typically form dimers, suggesting that calcium-mediated conformational changes in NECAB proteins may induce antibiotic biosynthesis monooxygenase domain dimerization, potentially activating some enzymatic properties. However, the substrate for this enzymatic activity remains uncertain. Alternatively, calcium-mediated conformational changes might influence protein interactions or the subcellular localization of NECAB proteins by controlling the availability of protein-protein interaction domains situated between the EF hands and the antibiotic biosynthesis monooxygenase domain. This review summarizes what is known about genomic organization, tissue expression, intracellular localization, interaction partners, and the physiological and pathophysiological role of the NECAB family.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"1236-1243"},"PeriodicalIF":5.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chondroitinase ABC combined with Schwann cell transplantation enhances restoration of neural connection and functional recovery following acute and chronic spinal cord injury. 软骨素酶ABC与许旺细胞移植相结合,可增强急慢性脊髓损伤后的神经连接恢复和功能恢复。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-05-01 Epub Date: 2024-06-03 DOI: 10.4103/NRR.NRR-D-23-01338
Wenrui Qu, Xiangbing Wu, Wei Wu, Ying Wang, Yan Sun, Lingxiao Deng, Melissa Walker, Chen Chen, Heqiao Dai, Qi Han, Ying Ding, Yongzhi Xia, George Smith, Rui Li, Nai-Kui Liu, Xiao-Ming Xu
{"title":"Chondroitinase ABC combined with Schwann cell transplantation enhances restoration of neural connection and functional recovery following acute and chronic spinal cord injury.","authors":"Wenrui Qu, Xiangbing Wu, Wei Wu, Ying Wang, Yan Sun, Lingxiao Deng, Melissa Walker, Chen Chen, Heqiao Dai, Qi Han, Ying Ding, Yongzhi Xia, George Smith, Rui Li, Nai-Kui Liu, Xiao-Ming Xu","doi":"10.4103/NRR.NRR-D-23-01338","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-23-01338","url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202505000-00029/figure1/v/2024-07-28T173839Z/r/image-tiff Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties. A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury. A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity, and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar, thus limiting axonal reentry into the host spinal cord. Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury. We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders, Schwann cells migrated for considerable distances in both rostral and caudal directions. Such Schwann cell migration led to enhanced axonal regrowth, including the serotonergic and dopaminergic axons originating from supraspinal regions, and promoted recovery of locomotor and urinary bladder functions. Importantly, the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury, even when treatment was delayed for 3 months to mimic chronic spinal cord injury. These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"20 5","pages":"1467-1482"},"PeriodicalIF":5.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of axon guidance molecules in the pathogenesis of epilepsy. 轴突导向分子在癫痫发病机制中的作用。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-05-01 Epub Date: 2024-04-16 DOI: 10.4103/NRR.NRR-D-23-01620
Zheng Liu, Chunhua Pan, Hao Huang
{"title":"The role of axon guidance molecules in the pathogenesis of epilepsy.","authors":"Zheng Liu, Chunhua Pan, Hao Huang","doi":"10.4103/NRR.NRR-D-23-01620","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-23-01620","url":null,"abstract":"<p><p>Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target novel cellular and molecular mechanisms and mechanisms of action. Increasing evidence suggests that axon guidance molecules play a role in the structural and functional modifications of neural networks and that the dysregulation of these molecules is associated with epilepsy susceptibility. In this review, we discuss the essential role of axon guidance molecules in neuronal activity in patients with epilepsy as well as the impact of these molecules on synaptic plasticity and brain tissue remodeling. Furthermore, we examine the relationship between axon guidance molecules and neuroinflammation, as well as the structural changes in specific brain regions that contribute to the development of epilepsy. Ample evidence indicates that axon guidance molecules, including semaphorins and ephrins, play a fundamental role in guiding axon growth and the establishment of synaptic connections. Deviations in their expression or function can disrupt neuronal connections, ultimately leading to epileptic seizures. The remodeling of neural networks is a significant characteristic of epilepsy, with axon guidance molecules playing a role in the dynamic reorganization of neural circuits. This, in turn, affects synapse formation and elimination. Dysregulation of these molecules can upset the delicate balance between excitation and inhibition within a neural network, thereby increasing the risk of overexcitation and the development of epilepsy. Inflammatory signals can regulate the expression and function of axon guidance molecules, thus influencing axonal growth, axon orientation, and synaptic plasticity. The dysregulation of neuroinflammation can intensify neuronal dysfunction and contribute to the occurrence of epilepsy. This review delves into the mechanisms associated with the pathogenicity of axon guidance molecules in epilepsy, offering a valuable reference for the exploration of therapeutic targets and presenting a fresh perspective on treatment strategies for this condition.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"20 5","pages":"1244-1257"},"PeriodicalIF":5.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological intervention for chronic phase of spinal cord injury. 对脊髓损伤慢性期进行药物干预。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-05-01 Epub Date: 2024-06-26 DOI: 10.4103/NRR.NRR-D-24-00176
Chihiro Tohda
{"title":"Pharmacological intervention for chronic phase of spinal cord injury.","authors":"Chihiro Tohda","doi":"10.4103/NRR.NRR-D-24-00176","DOIUrl":"10.4103/NRR.NRR-D-24-00176","url":null,"abstract":"<p><p>Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challenging issues in spinal cord injury. As spinal cord injury progresses to the chronic phase, lost motor and sensory functions are not recovered. Several reasons may be attributed to the failure of recovery from chronic spinal cord injury. These include factors that inhibit axonal growth such as activated astrocytes, chondroitin sulfate proteoglycan, myelin-associated proteins, inflammatory microglia, and fibroblasts that accumulate at lesion sites. Skeletal muscle atrophy due to denervation is another chronic and detrimental spinal cord injury-specific condition. Although several intervention strategies based on multiple outlooks have been attempted for treating spinal cord injury, few approaches have been successful. To treat chronic spinal cord injury, neural cells or tissue substitutes may need to be supplied in the cavity area to enable possible axonal growth. Additionally, stimulating axonal growth activity by extrinsic factors is extremely important and essential for maintaining the remaining host neurons and transplanted neurons. This review focuses on pharmacotherapeutic approaches using small compounds and proteins to enable axonal growth in chronic spinal cord injury. This review presents some of these candidates that have shown promising outcomes in basic research ( in vivo animal studies) and clinical trials: AA-NgR(310)ecto-Fc (AXER-204), fasudil, phosphatase and tensin homolog protein antagonist peptide 4, chondroitinase ABC, intracellular sigma peptide, (-)-epigallocatechin gallate, matrine, acteoside, pyrvate kinase M2, diosgenin, granulocyte-colony stimulating factor, and fampridine-sustained release. Although the current situation suggests that drug-based therapies to recover function in chronic spinal cord injury are limited, potential candidates have been identified through basic research, and these candidates may be subjects of clinical studies in the future. Moreover, cocktail therapy comprising drugs with varied underlying mechanisms may be effective in treating the refractory status of chronic spinal cord injury.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"1377-1389"},"PeriodicalIF":5.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combinatorial therapies for spinal cord injury repair. 脊髓损伤修复的组合疗法。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-05-01 Epub Date: 2024-06-03 DOI: 10.4103/NRR.NRR-D-24-00061
Carla S Sousa, Andreia Monteiro, António J Salgado, Nuno A Silva
{"title":"Combinatorial therapies for spinal cord injury repair.","authors":"Carla S Sousa, Andreia Monteiro, António J Salgado, Nuno A Silva","doi":"10.4103/NRR.NRR-D-24-00061","DOIUrl":"10.4103/NRR.NRR-D-24-00061","url":null,"abstract":"<p><p>Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed to damaged neurons, inhibitory molecules, dysfunctional immune response, and glial scarring. Unfortunately, currently, there are no effective treatments available that can fully repair the spinal cord and improve functional outcomes. Nevertheless, numerous pre-clinical approaches have been studied for spinal cord injury recovery, including using biomaterials, cells, drugs, or technological-based strategies. Combinatorial treatments, which target various aspects of spinal cord injury pathophysiology, have been extensively tested in the last decade. These approaches aim to synergistically enhance repair processes by addressing various obstacles faced during spinal cord regeneration. Thus, this review intends to provide scientists and clinicians with an overview of pre-clinical combinatorial approaches that have been developed toward the solution of spinal cord regeneration as well as update the current knowledge about spinal cord injury pathophysiology with an emphasis on the current clinical management.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"1293-1308"},"PeriodicalIF":5.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exercise preconditioning alleviates ischemia-induced memory deficits by increasing circulating adiponectin. 运动预处理通过增加循环脂肪连接蛋白缓解缺血诱导的记忆缺陷
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-05-01 Epub Date: 2024-03-01 DOI: 10.4103/NRR.NRR-D-23-01101
Meifeng Zheng, Borui Zhang, Sonata S Y Yau, Kwok-Fai So, Li Zhang, Haining Ou
{"title":"Exercise preconditioning alleviates ischemia-induced memory deficits by increasing circulating adiponectin.","authors":"Meifeng Zheng, Borui Zhang, Sonata S Y Yau, Kwok-Fai So, Li Zhang, Haining Ou","doi":"10.4103/NRR.NRR-D-23-01101","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-23-01101","url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202505000-00027/figure1/v/2024-07-28T173839Z/r/image-tiff Cerebral ischemia is a major health risk that requires preventive approaches in addition to drug therapy. Physical exercise enhances neurogenesis and synaptogenesis, and has been widely used for functional rehabilitation after stroke. In this study, we determined whether exercise training before disease onset can alleviate the severity of cerebral ischemia. We also examined the role of exercise-induced circulating factors in these effects. Adult mice were subjected to 14 days of treadmill exercise training before surgery for middle cerebral artery occlusion. We found that this exercise pre-conditioning strategy effectively attenuated brain infarct area, inhibited gliogenesis, protected synaptic proteins, and improved novel object and spatial memory function. Further analysis showed that circulating adiponectin plays a critical role in these preventive effects of exercise. Agonist activation of adiponectin receptors by AdipoRon mimicked the effects of exercise, while inhibiting receptor activation abolished the exercise effects. In summary, our results suggest a crucial role of circulating adiponectin in the effects of exercise pre-conditioning in protecting against cerebral ischemia and supporting the health benefits of exercise.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"20 5","pages":"1445-1454"},"PeriodicalIF":5.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信