Neurobiology of Disease最新文献

筛选
英文 中文
Low-beta versus high-beta band cortico-subcortical coherence in movement inhibition and expectation. 运动抑制和期望中的低-贝塔带与高-贝塔带皮层-皮层下连贯性。
IF 5.1 2区 医学
Neurobiology of Disease Pub Date : 2024-10-02 DOI: 10.1016/j.nbd.2024.106689
Chunyan Cao, Vladimir Litvak, Shikun Zhan, Wei Liu, Chao Zhang, Bomin Sun, Dianyou Li, Bernadette C M van Wijk
{"title":"Low-beta versus high-beta band cortico-subcortical coherence in movement inhibition and expectation.","authors":"Chunyan Cao, Vladimir Litvak, Shikun Zhan, Wei Liu, Chao Zhang, Bomin Sun, Dianyou Li, Bernadette C M van Wijk","doi":"10.1016/j.nbd.2024.106689","DOIUrl":"https://doi.org/10.1016/j.nbd.2024.106689","url":null,"abstract":"<p><p>Beta band oscillations in the sensorimotor cortex and subcortical structures, such as the subthalamic nucleus (STN) and internal pallidum (GPi), are closely linked to motor control. Recent research suggests that low-beta (14.5-23.5 Hz) and high-beta (23.5-35 Hz) cortico-STN coherence arise through distinct networks, possibly reflecting indirect and hyperdirect pathways. In this study, we sought to probe whether low- and high-beta coherence also exhibit different functional roles in facilitating and inhibiting movement. Twenty patients with Parkinson's disease who had deep brain stimulation electrodes implanted in either STN or GPi performed a classical go/nogo task while undergoing simultaneous magnetoencephalography and local field potentials recordings. Subjects' expectations were manipulated by presenting go- and nogo-trials with varying probabilities. We identified a lateral source in the sensorimotor cortex for low-beta coherence, as well as a medial source near the supplementary motor area for high-beta coherence. Task-related coherence time courses for these two sources revealed that low-beta coherence was more strongly implicated than high-beta coherence in the performance of go-trials. Accordingly, average pre-stimulus low-beta but not high-beta coherence or spectral power correlated with overall reaction time across subjects. High-beta coherence during unexpected nogo-trials was higher compared to expected nogo-trials at a relatively long latency of 3 s after stimulus presentation. Neither low- nor high-beta coherence showed a significant correlation with patients' symptom severity at baseline assessment. While low-beta cortico-subcortical coherence appears to be related to motor output, the role of high-beta coherence requires further investigation.</p>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TNFα prevents FGF4-mediated rescue of astrocyte dysfunction and reactivity in human ALS models. TNFα 可阻止 FGF4 介导的人类 ALS 模型中星形胶质细胞功能障碍和反应性的恢复。
IF 5.1 2区 医学
Neurobiology of Disease Pub Date : 2024-10-01 DOI: 10.1016/j.nbd.2024.106687
Erika Velasquez, Ekaterina Savchenko, Sara Marmolejo-Martínez-Artesero, Désiré Challuau, Aline Aebi, Yuriy Pomeshchik, Nuno Jorge Lamas, Mauno Vihinen, Melinda Rezeli, Bernard Schneider, Cedric Raoul, Laurent Roybon
{"title":"TNFα prevents FGF4-mediated rescue of astrocyte dysfunction and reactivity in human ALS models.","authors":"Erika Velasquez, Ekaterina Savchenko, Sara Marmolejo-Martínez-Artesero, Désiré Challuau, Aline Aebi, Yuriy Pomeshchik, Nuno Jorge Lamas, Mauno Vihinen, Melinda Rezeli, Bernard Schneider, Cedric Raoul, Laurent Roybon","doi":"10.1016/j.nbd.2024.106687","DOIUrl":"https://doi.org/10.1016/j.nbd.2024.106687","url":null,"abstract":"<p><p>Astrocytes play a crucial role in the onset and progression of amyotrophic lateral sclerosis (ALS), a fatal disorder marked by the degeneration of motor neurons (MNs) in the central nervous system. Although astrocytes in ALS are known to be toxic to MNs, the pathological changes leading to their neurotoxic phenotype remain poorly understood. In this study, we generated human astrocytes from induced pluripotent stem cells (iPSCs) carrying the ALS-associated A4V mutation in superoxide dismutase 1 (SOD1) to examine early cellular pathways and network changes. Proteomic analysis revealed that ALS astrocytes are both dysfunctional and reactive compared to control astrocytes. We identified significant alterations in the levels of proteins linked to ALS pathology and the innate immune cGAS-STING pathway. Furthermore, we found that ALS astrocyte reactivity differs from that of control astrocytes treated with tumor necrosis factor alpha (TNFα), a key cytokine in inflammatory reactions. We then evaluated the potential of fibroblast growth factor (FGF) 2, 4, 16, and 18 to reverse ALS astrocyte phenotype. Among these, FGF4 successfully reversed ALS astrocyte dysfunction and reactivity in vitro. When delivered to the spinal cord of the SOD1<sup>G93A</sup> mouse model of ALS, FGF4 lowered astrocyte reactivity. However, this was not sufficient to protect MNs from cell death. Further analysis indicated that TNFα abrogated the reactivity reduction achieved by FGF4, suggesting that complete rescue of the ALS phenotype by FGF4 is hindered by ongoing complex neuroinflammatory processes in vivo. In summary, our data demonstrate that astrocytes generated from ALS iPSCs are inherently dysfunctional and exhibit an immune reactive phenotype. Effectively targeting astrocyte dysfunction and reactivity in vivo may help mitigate ALS and prevent MN death.</p>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Legumain/asparaginyl endopeptidase-resistant tau fibril fold produces corticobasal degeneration-specific C-terminal tau fragment. 抗Legumain/天冬氨酰内肽酶的tau纤维折叠可产生皮质基底变性特异性C端tau片段。
IF 5.1 2区 医学
Neurobiology of Disease Pub Date : 2024-09-29 DOI: 10.1016/j.nbd.2024.106686
Daisuke Taniguchi, Shotaro Shimonaka, Ahmed Imtiaz, Montasir Elahi, Taku Hatano, Yuzuru Imai, Nobutaka Hattori
{"title":"Legumain/asparaginyl endopeptidase-resistant tau fibril fold produces corticobasal degeneration-specific C-terminal tau fragment.","authors":"Daisuke Taniguchi, Shotaro Shimonaka, Ahmed Imtiaz, Montasir Elahi, Taku Hatano, Yuzuru Imai, Nobutaka Hattori","doi":"10.1016/j.nbd.2024.106686","DOIUrl":"https://doi.org/10.1016/j.nbd.2024.106686","url":null,"abstract":"<p><p>Corticobasal degeneration (CBD) is a major four-repeat tauopathy along with progressive supranuclear palsy (PSP). Although detergent-insoluble 37-40-kDa carboxyl-terminal tau fragments (CTFs) are hallmarks of CBD pathology, the process of their formation is unknown. This study monitored the formation of CBD-type fibrils that exhibit astrocytic plaques, a characteristic CBD pathology, using its biochemical properties different from those of Alzheimer's disease/PSP-type fibrils. Tau fibrils from patients with CBD were amplified in non-astrocytic cultured cells, which maintained CBD-specific biochemical properties. We found that the lysosomal protease Legumain (LGMN) was involved in the generation of CBD-specific 37-40-kDa CTFs. While LGMN cleaved tau fibrils at Asn167 and Asn368 in the brain tissues of patients with Alzheimer's disease and PSP, tau fibrils from patients with CBD were predominantly resistant to cleavage at Asn368 by LGMN, resulting in the generation of CBD-specific CTFs. LGMN preference in tau fibrils was lost upon unraveling the tau fibril fold, suggesting that the CBD-specific tau fibril fold contributes to CBD-specific CTF production. From these findings, we found a way to differentiate astrocytic plaque from tufted astrocyte using the anti-Asn368 LGMN cleavage site-specific antibody. Inoculation of tau fibrils amplified in non-astrocytic cells into the mouse brain reproduced LGMN-resistant tau fibrils and recapitulated anti-Asn368-negative astrocytic plaques, which are characteristic of CBD pathology. This study supports the existence of disease-specific tau fibrils and contribute to further understanding of the tauopathy diagnosis. Our tau propagation mouse model using cellular tau seeds may contribute to uncovering disease mechanisms and screening for potential therapeutic compounds.</p>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Striatal cholinergic transmission in an inducible transgenic mouse model of paroxysmal non-kinesiogenic dyskinesia. 阵发性非运动性运动障碍诱导转基因小鼠模型的纹状体胆碱能传导。
IF 5.1 2区 医学
Neurobiology of Disease Pub Date : 2024-09-27 DOI: 10.1016/j.nbd.2024.106685
Mariangela Scarduzio, Karen L Eskow Jaunarajs, David G Standaert
{"title":"Striatal cholinergic transmission in an inducible transgenic mouse model of paroxysmal non-kinesiogenic dyskinesia.","authors":"Mariangela Scarduzio, Karen L Eskow Jaunarajs, David G Standaert","doi":"10.1016/j.nbd.2024.106685","DOIUrl":"https://doi.org/10.1016/j.nbd.2024.106685","url":null,"abstract":"<p><p>Altered interaction between striatonigral dopaminergic (DA) inputs and local acetylcholine (ACh) in striatum has long been hypothesized to play a central role in the pathophysiology of dystonia and dyskinesia. Indeed, previous research using several genetic mouse models of human isolated dystonia identified a shared endophenotype with paradoxical excitation of striatal cholinergic interneuron (ChIs) activity in response to activation of dopamine D2 receptors (D2R). These mouse models lack a dystonic motor phenotype, which leaves a critical gap in comprehending the role of DA and ACh transmission in the manifestations of dystonia. To tackle this question, we used a combination of ex vivo slice physiology and in vivo monitoring of striatal ACh dynamics in the inducible, phenotypically penetrant, transgenic mouse model of paroxysmal non-kinesiogenic dyskinesia (PNKD), an animal with both dystonic and dyskinetic features. We found that, similarly to genetic models of isolated dystonia, the PNKD mouse displays D2R-induced paradoxical excitation of ChI firing in ex vivo striatal brain slices. In vivo, caffeine triggers dystonic symptoms while reversing the D2R-mediated excitation of ChIs and desynchronizing ACh release in PNKD mice. In WT littermate controls, caffeine stimulates spontaneous locomotion through a similar but reversed mechanism involving an excitatory switch of the D2R control of ChI activity, associated with enhanced synchronization of ACh release. These observations suggest that the \"paradoxical excitation\" of cholinergic interneurons described in isolated dystonia models could represent a compensatory or protective mechanism that prevents manifestation of movement abnormalities and that phenotypic dystonia is possible only when this is absent. These findings also suggest that D2Rs may play an important role in synchronizing the ChI network leading to rhythmic ACh release during heightened movement states. Dysfunction of this interaction and corresponding desynchrony of ACh release may contribute to aberrant movements.</p>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct conversion of human umbilical cord mesenchymal stem cells into dopaminergic neurons for Parkinson's disease treatment. 将人脐带间充质干细胞直接转化为多巴胺能神经元,用于帕金森病治疗。
IF 5.1 2区 医学
Neurobiology of Disease Pub Date : 2024-09-27 DOI: 10.1016/j.nbd.2024.106683
Jinming Liu, Zhongqing Ji, Qisheng He, Huanhuan Chen, Xiaojing Xu, Qiuhao Mei, Ya'nan Hu, Huanxiang Zhang
{"title":"Direct conversion of human umbilical cord mesenchymal stem cells into dopaminergic neurons for Parkinson's disease treatment.","authors":"Jinming Liu, Zhongqing Ji, Qisheng He, Huanhuan Chen, Xiaojing Xu, Qiuhao Mei, Ya'nan Hu, Huanxiang Zhang","doi":"10.1016/j.nbd.2024.106683","DOIUrl":"10.1016/j.nbd.2024.106683","url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits due to the depletion of nigrostriatal dopamine. Stem cell differentiation therapy emerges as a promising treatment option for sustained symptom relief. In this study, we successfully developed a one-step differentiation system using the YFBP cocktail (Y27632, Forskolin, SB431542, and SP600125) to effectively convert human umbilical cord mesenchymal stem cells (hUCMSCs) into dopaminergic neurons without genetic modification. This approach addresses the challenge of rapidly and safely generating functional neurons on a large scale. After a 7-day induction period, over 80 % of the cells were double-positive for TUBB3 and NEUN. Transcriptome analysis revealed the dual roles of the cocktail in inducing fate erasure in mesenchymal stem cells and activating the neuronal program. Notably, these chemically induced cells (CiNs) did not express HLA class II genes, preserving their immune-privileged status. Further study indicated that YFBP significantly downregulated p53 signaling and accelerated the differentiation process when Pifithrin-α, a p53 signaling inhibitor, was applied. Additionally, Wnt/β-catenin signaling was transiently activated within one day, but the prolonged activation hindered the neuronal differentiation of hUCMSCs. Upon transplantation into the striatum of mice, CiNs survived well and tested positive for dopaminergic neuron markers. They exhibited typical action potentials and sodium and potassium ion channel activity, demonstrating neuronal electrophysiological activity. Furthermore, CiNs treatment significantly increased the number of tyrosine hydroxylase-positive cells and the concentration of dopamine in the striatum, effectively ameliorating movement disorders in PD mice. Overall, our study provides a secure and reliable framework for cell replacement therapy for Parkinson's disease.</p>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Botch improves cognitive impairment after cerebral ischemia associated with microglia-induced A1-type astrocyte activation. Botch 可改善与小胶质细胞诱导的 A1 型星形胶质细胞激活相关的脑缺血后认知障碍。
IF 5.1 2区 医学
Neurobiology of Disease Pub Date : 2024-09-26 DOI: 10.1016/j.nbd.2024.106684
Siqi Gong, Xiuying Cai, Yue Wang, Jiaxing Wang, Haixing Xiao, Lei Bai, Juehua Zhu, Xiang Li
{"title":"Botch improves cognitive impairment after cerebral ischemia associated with microglia-induced A1-type astrocyte activation.","authors":"Siqi Gong, Xiuying Cai, Yue Wang, Jiaxing Wang, Haixing Xiao, Lei Bai, Juehua Zhu, Xiang Li","doi":"10.1016/j.nbd.2024.106684","DOIUrl":"10.1016/j.nbd.2024.106684","url":null,"abstract":"<p><p>Vascular cognitive impairment (VCI) is a clinical syndrome that arises from cerebrovascular issues and associated risk factors, resulting in difficulties in at least one area of cognitive function. VCI has emerged as the second most prevalent type of dementia following Alzheimer's disease, yet there is no effective clinical treatment. Botch, an endogenous Notch1 antagonist, demonstrates neuroprotective effects by inhibiting neuroinflammatory responses mediated through the Notch pathway. While its role in stroke-induced neuroinflammation is well-established, its involvement in VCI remains largely unexplored. This study investigates the role and potential mechanisms of Botch in a rat model of cognitive impairment caused by bilateral common carotid artery occlusion (BCCAO). Firstly, we observed that Botch levels were down-regulated in BCCAO rats, which correlated with increased release of inflammatory cytokines and neuronal damage. Microglia in BCCAO rats released interleukin-1α (IL-1α), tumor necrosis factor-α (TNF-α), and complement component 1q (C1q), leading to the activation of neurotoxic C3+ A1 reactive astrocytes. Then, the down-regulation of Botch exacerbated microglia-mediated inflammation, activated C3+ A1 astrocytes, worsened neuronal damage, and led to a decline in cognitive function. Conversely, the re-expression of Botch alleviated C3+ astrocyte activation, inhibited neuronal damage, and improved mental function. In conclusion, Botch plays a crucial role in inhibiting neuroinflammation induced by type A1 reactive astrocytes. It achieves this by blocking the activation of microglia triggered by the Notch pathway. Ultimately, it inhibits neuronal damage to play a neuroprotective role. These findings suggest that Botch may represent a novel potential target for treating VCI.</p>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Signaling roles of sphingolipids in the ischemic brain and their potential utility as therapeutic targets. 鞘磷脂在缺血性大脑中的信号作用及其作为治疗靶点的潜在用途。
IF 5.1 2区 医学
Neurobiology of Disease Pub Date : 2024-09-25 DOI: 10.1016/j.nbd.2024.106682
Ayan Mohamud Yusuf, Xiaoni Zhang, Erich Gulbins, Ying Peng, Nina Hagemann, Dirk M Hermann
{"title":"Signaling roles of sphingolipids in the ischemic brain and their potential utility as therapeutic targets.","authors":"Ayan Mohamud Yusuf, Xiaoni Zhang, Erich Gulbins, Ying Peng, Nina Hagemann, Dirk M Hermann","doi":"10.1016/j.nbd.2024.106682","DOIUrl":"10.1016/j.nbd.2024.106682","url":null,"abstract":"<p><p>Sphingolipids comprise a class of lipids, which are composed of a sphingoid base backbone and are essential structural components of cell membranes. Beyond their role in maintaining cellular integrity, several sphingolipids are pivotally involved in signaling pathways controlling cell proliferation, differentiation, and death. The brain exhibits a particularly high concentration of sphingolipids and dysregulation of the sphingolipid metabolism due to ischemic injury is implicated in consecutive pathological events. Experimental stroke studies revealed that the stress sphingolipid ceramide accumulates in the ischemic brain post-stroke. Specifically, counteracting ceramide accumulation protects against ischemic damage and promotes brain remodeling, which translates into improved behavioral outcome. Sphingomyelin substantially influences cell membrane fluidity and thereby controls the release of extracellular vesicles, which are important vehicles in cellular communication. By modulating sphingomyelin content, these vesicles were shown to contribute to behavioral recovery in experimental stroke studies. Another important sphingolipid that influences stroke pathology is sphingosine-1-phosphate, which has been attributed a pro-angiogenic function, that is presumably mediated by its effect on endothelial function and/or immune cell trafficking. In experimental and clinical studies, sphingosine-1-phosphate receptor modulators allowed to modify clinically significant stroke recovery. Due to their pivotal roles in cell signaling, pharmacological compounds modulating sphingolipids, their enzymes or receptors hold promise as therapeutics in human stroke patients.</p>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retinal damage promotes mitochondrial transfer in the visual system of a mouse model of Leber hereditary optic neuropathy 视网膜损伤会促进 Leber 遗传性视神经病变小鼠模型视觉系统中的线粒体转移。
IF 5.1 2区 医学
Neurobiology of Disease Pub Date : 2024-09-25 DOI: 10.1016/j.nbd.2024.106681
{"title":"Retinal damage promotes mitochondrial transfer in the visual system of a mouse model of Leber hereditary optic neuropathy","authors":"","doi":"10.1016/j.nbd.2024.106681","DOIUrl":"10.1016/j.nbd.2024.106681","url":null,"abstract":"<div><div>Lenadogene nolparvovec is a gene therapy which has been developed to treat Leber hereditary optic neuropathy (LHON) caused by a point mutation in the mitochondrial NADH dehydrogenase 4 (<em>ND4</em>) gene. Clinical trials have demonstrated a significant improvement of visual acuity up to 5 years after treatment by lenadogene nolparvovec but, surprisingly, unilateral treatment resulted in bilateral improvement of vision. This contralateral effect – similarly observed with other gene therapy products in development for <em>MT-ND4</em>-LHON – is supported by the migration of viral vector genomes and their transcripts to the contralateral eye, as reported in animals, and post-mortem samples from two patients. In this study, we used an AAV2 encoding fluorescent proteins targeting mitochondria to investigate whether these organelles themselves could transfer from the treated eye to the fellow one. We found that mitochondria travel along the visual system (optic chiasm and primary visual cortex) and reach the contralateral eye (optic nerve and retina) in physiological conditions. We also observed that, in a rotenone-induced model of retinal damage mimicking LHON, mitochondrial transfer from the healthy to the damaged eye was accelerated and enhanced. Our results thus provide a further explanation for the contralateral beneficial effect observed during clinical studies with lenadogene nolparvovec.</div></div>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
People with HIV exhibit spectrally distinct patterns of rhythmic cortical activity serving cognitive flexibility 艾滋病病毒感染者在认知灵活性方面表现出不同的大脑皮层节律活动模式。
IF 5.1 2区 医学
Neurobiology of Disease Pub Date : 2024-09-24 DOI: 10.1016/j.nbd.2024.106680
{"title":"People with HIV exhibit spectrally distinct patterns of rhythmic cortical activity serving cognitive flexibility","authors":"","doi":"10.1016/j.nbd.2024.106680","DOIUrl":"10.1016/j.nbd.2024.106680","url":null,"abstract":"<div><div>Despite effective antiretroviral therapy, cognitive impairment remains prevalent among people with HIV (PWH) and decrements in executive function are particularly prominent. One component of executive function is cognitive flexibility, which integrates a variety of executive functions to dynamically adapt one's behavior in response to changing contextual demands. Though substantial work has illuminated HIV-related aberrations in brain function, it remains unclear how the neural oscillatory dynamics serving cognitive flexibility are affected by HIV-related alterations in neural functioning. Herein, 149 participants (PWH: 74; seronegative controls: 75) between the ages of 29–76 years completed a perceptual feature matching task that probes cognitive flexibility during high-density magnetoencephalography (MEG). Neural responses were decomposed into the time-frequency domain and significant oscillatory responses in the theta (4–8 Hz), alpha (10–16 Hz), and gamma (74–98 Hz) spectral windows were imaged using a beamforming approach. Whole-brain voxel-wise comparisons were then conducted on these dynamic functional maps to identify HIV-related differences in the neural oscillatory dynamics supporting cognitive flexibility. Our findings indicated group differences in alpha oscillatory activity in the cingulo-opercular cortices, and differences in gamma activity were found in the cerebellum. Across all participants, alpha and gamma activity in these regions were associated with performance on the cognitive flexibility task. Further, PWH who had been treated with antiretroviral therapy for a longer duration and those with higher current CD4 counts had alpha responses that more closely resembled those of seronegative controls, suggesting that optimal clinical management of HIV infection is associated with preserved neural dynamics supporting cognitive flexibility.</div></div>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A longitudinal MRI analysis reveals altered brain connectivity and microstructural changes in a transgenic mouse model of Alzheimer's disease 纵向核磁共振成像分析揭示了阿尔茨海默病转基因小鼠模型中大脑连接性和微观结构的改变
IF 5.1 2区 医学
Neurobiology of Disease Pub Date : 2024-09-23 DOI: 10.1016/j.nbd.2024.106679
{"title":"A longitudinal MRI analysis reveals altered brain connectivity and microstructural changes in a transgenic mouse model of Alzheimer's disease","authors":"","doi":"10.1016/j.nbd.2024.106679","DOIUrl":"10.1016/j.nbd.2024.106679","url":null,"abstract":"<div><div>Alzheimer's disease (AD) is characterized by progressive cognitive decline and neuropathological changes, yet the underlying neurobiological mechanisms remain elusive. Here, we employed a multimodal longitudinal neuroimaging approach, using anatomical and functional sequences on a high field magnetic resonance imaging (MRI) preclinical scanner, to investigate alterations in brain connectivity and white matter microstructure in a transgenic mouse model of AD (J20) when compared to wild-type (WT) littermates. Functional connectivity analysis revealed distinct network disruptions in J20 mice, primarily involving connections between posterior and anterior brain regions; importantly, a significant interaction between group and age highlighted an exacerbation of these connectivity changes with advancing age in J20 mice. In addition, significant reductions in fractional anisotropy (FA) were observed in the corpus callosum of J20 mice compared to WT, indicative of microstructural alterations consistent with white matter pathology. The observed alterations in brain connectivity and microstructure provide valuable insights into the spatiotemporal processes underlying AD-related decline and underscore the utility of multimodal neuroimaging in elucidating the neurobiological substrates of AD pathology in animal models.</div></div>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0969996124002791/pdfft?md5=43450098de98d9cbb9aa5700ef7ec892&pid=1-s2.0-S0969996124002791-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信