ACS Macro Letters最新文献

筛选
英文 中文
Kinetically Controlled Approach for One-Pot Synthesis of Poly(peptide-b-peptoid) Exhibiting Well-Defined Secondary Structure and Thermal Stability. 单锅合成具有明确二级结构和热稳定性的聚(肽-b-肽)的动力学控制方法
IF 5.1
ACS Macro Letters Pub Date : 2025-02-18 Epub Date: 2025-01-31 DOI: 10.1021/acsmacrolett.4c00823
Prabir Maity, Arjun Singh Bisht, Deepak, Raj Kumar Roy
{"title":"Kinetically Controlled Approach for One-Pot Synthesis of Poly(peptide-<i>b</i>-peptoid) Exhibiting Well-Defined Secondary Structure and Thermal Stability.","authors":"Prabir Maity, Arjun Singh Bisht, Deepak, Raj Kumar Roy","doi":"10.1021/acsmacrolett.4c00823","DOIUrl":"10.1021/acsmacrolett.4c00823","url":null,"abstract":"<p><p>Sequence-controlled polymerization aims to bridge the gap between biopolymers and synthetic macromolecules. In a kinetically controlled approach, the inherent reactivity differences among monomers determine the primary structure or sequence of the monomers linked within the resulting copolymer chains. This report outlines a one-pot synthesis of polypeptide-<i>b</i>-polypeptoid by choosing a suitable pair of N-carboxy anhydride (NCA) monomers with significant reactivity differences. We have demonstrated the preparation of well-defined block copolymers, including polyproline-<i>b</i>-polysarcosine (PLP-<i>b</i>-PSar) and poly(propargyl proline)-<i>b</i>-polysarcosine (PLPP-<i>b</i>-PSar) in a single step. <sup>1</sup>H NMR kinetic studies confirmed the sequence-controlled primary structures of these block copolymers. The NMR analysis indicated a striking reactivity ratio difference (<i>r</i><sub>PLP</sub> = 925 and <i>r</i><sub>PSar</sub> = 0.0014; <i>r</i><sub>PLPP</sub> = 860 and <i>r</i><sub>PSar</sub> = 0.0015) between the selected monomer pairs, which was crucial for a one-pot block copolymer synthesis. Notably, these sequence-controlled copolymers' secondary structures and stability were remarkably similar to those of block copolymers synthesized through conventional sequential addition methods. This further underscores the practicality of this kinetically controlled approach.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":" ","pages":"188-194"},"PeriodicalIF":5.1,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion of Nanosheets in Unentangled Polymer Melts
IF 5.8
ACS Macro Letters Pub Date : 2025-02-18 DOI: 10.1021/acsmacrolett.4c00535
Shiwei Sun, Kai Zhang, Sai Xu, Xinghua Shi, Jiuling Wang
{"title":"Diffusion of Nanosheets in Unentangled Polymer Melts","authors":"Shiwei Sun, Kai Zhang, Sai Xu, Xinghua Shi, Jiuling Wang","doi":"10.1021/acsmacrolett.4c00535","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00535","url":null,"abstract":"Understanding the dynamics of nanosheets in polymer matrices is crucial for the processing of polymer nanocomposites and their applications in drug delivery. In this work, we investigate the diffusion of thin nanosheets in unentangled polymer melts using molecular dynamics simulations. We show that for nanosheets smaller than a characteristic size <i>l</i><sub>c</sub>, which is a few times the polymer chain size, the continuum hydrodynamic theory based on macroscopic viscosity breaks down and significantly underestimates the diffusion coefficients. For nanosheets with sizes <i>l</i> &lt; <i>l</i><sub>c</sub>, we derive scaling relationships for both translational and rotational diffusion coefficients as functions of <i>l</i> and further reveal the dynamical coupling between nanosheet motion and the modes of the polymer melt. For <i>l</i> &gt; <i>l</i><sub>c</sub>, the continuum theory is recovered. Our findings reconcile the continuum and scaling theories for the diffusion of nanoparticles in polymer melts.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"64 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143443823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion of Nanosheets in Unentangled Polymer Melts
IF 5.1
ACS Macro Letters Pub Date : 2025-02-18 DOI: 10.1021/acsmacrolett.4c0053510.1021/acsmacrolett.4c00535
Shiwei Sun, Kai Zhang, Sai Xu, Xinghua Shi* and Jiuling Wang*, 
{"title":"Diffusion of Nanosheets in Unentangled Polymer Melts","authors":"Shiwei Sun,&nbsp;Kai Zhang,&nbsp;Sai Xu,&nbsp;Xinghua Shi* and Jiuling Wang*,&nbsp;","doi":"10.1021/acsmacrolett.4c0053510.1021/acsmacrolett.4c00535","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00535https://doi.org/10.1021/acsmacrolett.4c00535","url":null,"abstract":"<p >Understanding the dynamics of nanosheets in polymer matrices is crucial for the processing of polymer nanocomposites and their applications in drug delivery. In this work, we investigate the diffusion of thin nanosheets in unentangled polymer melts using molecular dynamics simulations. We show that for nanosheets smaller than a characteristic size <i>l</i><sub>c</sub>, which is a few times the polymer chain size, the continuum hydrodynamic theory based on macroscopic viscosity breaks down and significantly underestimates the diffusion coefficients. For nanosheets with sizes <i>l</i> &lt; <i>l</i><sub>c</sub>, we derive scaling relationships for both translational and rotational diffusion coefficients as functions of <i>l</i> and further reveal the dynamical coupling between nanosheet motion and the modes of the polymer melt. For <i>l</i> &gt; <i>l</i><sub>c</sub>, the continuum theory is recovered. Our findings reconcile the continuum and scaling theories for the diffusion of nanoparticles in polymer melts.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"14 3","pages":"284–291 284–291"},"PeriodicalIF":5.1,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143635861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Thienothiophene-Based Olefin-Linked Covalent Organic Framework for the Metal-Free Photocatalytic Oxidative Coupling of Amines
IF 5.1
ACS Macro Letters Pub Date : 2025-02-15 DOI: 10.1021/acsmacrolett.4c0084710.1021/acsmacrolett.4c00847
Bertha Lotsi, Aadarsh Sharma, Jared G. Doremus, Spencer T. Burton, Claudia Turro and Psaras L. McGrier*, 
{"title":"A Thienothiophene-Based Olefin-Linked Covalent Organic Framework for the Metal-Free Photocatalytic Oxidative Coupling of Amines","authors":"Bertha Lotsi,&nbsp;Aadarsh Sharma,&nbsp;Jared G. Doremus,&nbsp;Spencer T. Burton,&nbsp;Claudia Turro and Psaras L. McGrier*,&nbsp;","doi":"10.1021/acsmacrolett.4c0084710.1021/acsmacrolett.4c00847","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00847https://doi.org/10.1021/acsmacrolett.4c00847","url":null,"abstract":"<p >The oxidative coupling of amines is a useful way to prepare many diverse compounds for the pharmaceutical and chemical industries. Covalent organic frameworks (COFs), a crystalline class of porous polymers, have emerged as promising heterogeneous photocatalysts that can accomplish this transformation under metal-free conditions due to their excellent photochemical stability and tunable electronic properties. Herein, we report the optoelectronic and photocatalytic properties of an olefin-linked COF containing thienothiophene (TT) and 2,4,6-trimethyl-1,3,5-triazine (TMT) units. The TT-TMT-COF exhibited a narrow band gap with extended light absorption and excellent charge separation, making it useful for the oxidative coupling of various benzylamines. The TT-TMT-COF exhibited fast reaction times, excellent recyclability, and conversions as high as ∼99%. The reactivity of TT-TMT-COF was on par or significantly better than that of a few small molecule 2,4,6-tris((<i>E</i>)-2-(thieno[3,2-<i>b</i>]thiophen-2-yl)vinyl)-1,3,5-triazine (TT-TMT) and 2,4,6-tris((<i>E</i>)-2-(thiophen-2-yl)vinyl)-1,3,5-triazine (Thio-TMT) homogeneous catalytic systems containing similar functional units. This work further highlights the ability of the COF to perform useful and efficient catalytic transformations in a sustainable manner.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"14 3","pages":"278–283 278–283"},"PeriodicalIF":5.1,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143635860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Thienothiophene-Based Olefin-Linked Covalent Organic Framework for the Metal-Free Photocatalytic Oxidative Coupling of Amines 用于胺类无金属光催化氧化偶联的噻吩基烯烃连接共价有机框架
IF 5.8
ACS Macro Letters Pub Date : 2025-02-15 DOI: 10.1021/acsmacrolett.4c00847
Bertha Lotsi, Aadarsh Sharma, Jared G. Doremus, Spencer T. Burton, Claudia Turro, Psaras L. McGrier
{"title":"A Thienothiophene-Based Olefin-Linked Covalent Organic Framework for the Metal-Free Photocatalytic Oxidative Coupling of Amines","authors":"Bertha Lotsi, Aadarsh Sharma, Jared G. Doremus, Spencer T. Burton, Claudia Turro, Psaras L. McGrier","doi":"10.1021/acsmacrolett.4c00847","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00847","url":null,"abstract":"The oxidative coupling of amines is a useful way to prepare many diverse compounds for the pharmaceutical and chemical industries. Covalent organic frameworks (COFs), a crystalline class of porous polymers, have emerged as promising heterogeneous photocatalysts that can accomplish this transformation under metal-free conditions due to their excellent photochemical stability and tunable electronic properties. Herein, we report the optoelectronic and photocatalytic properties of an olefin-linked COF containing thienothiophene (TT) and 2,4,6-trimethyl-1,3,5-triazine (TMT) units. The TT-TMT-COF exhibited a narrow band gap with extended light absorption and excellent charge separation, making it useful for the oxidative coupling of various benzylamines. The TT-TMT-COF exhibited fast reaction times, excellent recyclability, and conversions as high as ∼99%. The reactivity of TT-TMT-COF was on par or significantly better than that of a few small molecule 2,4,6-tris((<i>E</i>)-2-(thieno[3,2-<i>b</i>]thiophen-2-yl)vinyl)-1,3,5-triazine (TT-TMT) and 2,4,6-tris((<i>E</i>)-2-(thiophen-2-yl)vinyl)-1,3,5-triazine (Thio-TMT) homogeneous catalytic systems containing similar functional units. This work further highlights the ability of the COF to perform useful and efficient catalytic transformations in a sustainable manner.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"24 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143417990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Helical Poly(quioxaline-2,3-diyl)-Based Poly(carboxylic acid)s as a Chiroptical Chemosensor for Detection and Quantification of Small Enantiomeric Imbalances of Chiral Amines in Water
IF 5.1
ACS Macro Letters Pub Date : 2025-02-14 DOI: 10.1021/acsmacrolett.4c0081410.1021/acsmacrolett.4c00814
Tomonori Yamawaki, Takuma Kuroda, Takeshi Yamamoto, Yuuya Nagata and Michinori Suginome*, 
{"title":"Helical Poly(quioxaline-2,3-diyl)-Based Poly(carboxylic acid)s as a Chiroptical Chemosensor for Detection and Quantification of Small Enantiomeric Imbalances of Chiral Amines in Water","authors":"Tomonori Yamawaki,&nbsp;Takuma Kuroda,&nbsp;Takeshi Yamamoto,&nbsp;Yuuya Nagata and Michinori Suginome*,&nbsp;","doi":"10.1021/acsmacrolett.4c0081410.1021/acsmacrolett.4c00814","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00814https://doi.org/10.1021/acsmacrolett.4c00814","url":null,"abstract":"<p >Achiral dynamic helical polymers, poly(quinoxaline-2,3-diyl)s (<b>P1</b> and <b>P2</b>) bearing achiral carboxylic acid side chains, i.e., carboxymethoxymethyl (in <b>P1</b>) and carboxyethoxymethyl (in <b>P2</b>), with different polymerization degrees were synthesized. They exhibited induced circular dichroism (ICD) in the presence of chiral amines such as 1-phenylethylamine and nicotine, 1,2-amino alcohols such as valinol, leucinol, and prolinol, and the basic amino acid, arginine, in response to the induction of right- or left-handed helical conformation. The efficiency of helix induction depends on the compatibility of the structures of amines and polymers, with no clear structural correlation. The highly sensitive and formulated nature of ICD with the helical polymer-based poly(carboxylic acid)s allowed their use as CD-based sensors to detect and quantify minute imbalances of the enantiomeric excess of chiral molecules. We determined 0.2%–0.6% ee in the commercially available 1-phenylethylamine from three different suppliers, which have the label of “<i>dl</i>” or no indication of enantiopurity using <b>P1</b> as a chemosensor.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"14 3","pages":"272–277 272–277"},"PeriodicalIF":5.1,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143635859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scaling Behavior of Entanglement Dynamics in Polyelectrolyte Solutions: Insights from High-Frequency Rheometry
IF 5.8
ACS Macro Letters Pub Date : 2025-02-13 DOI: 10.1021/acsmacrolett.4c00722
Yahya Rharbi
{"title":"Scaling Behavior of Entanglement Dynamics in Polyelectrolyte Solutions: Insights from High-Frequency Rheometry","authors":"Yahya Rharbi","doi":"10.1021/acsmacrolett.4c00722","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00722","url":null,"abstract":"Entanglement dynamics in polyelectrolyte solutions remain a challenging topic, particularly in capturing the entire dynamic spectrum, from single entanglement relaxation (τ<sub>e</sub>) to reptation time (τ<sub>rep</sub>), and aligning these observations with scaling predictions in the semidilute entangled (SE) and fully entangled (FE) neutral regimes. Using piezo compressional and classic rotational rheometry, we investigate the scaling behaviors of key viscoelastic properties over several decades of time scales in ten million Mw cationic polyacrylamide solutions. Specific viscosity (η<sub>sp</sub>) and τ<sub>rep</sub> scale as predicted within Fuoss, SE, and FE regimes, defining crossover concentrations between these regimes (<i>C</i><sub>e</sub> and <i>C</i><sub>D</sub>). More importantly, τ<sub>e</sub>, the rubbery plateau width (τ<sub>rep</sub>/τ<sub>e</sub>), and the high-frequency modulus (<i>G</i><sub>e</sub>) scale as <i>C</i><sup>–1.14±0.02</sup>, <i>C</i><sup>1.25±0.07</sup>, and <i>C</i><sup>1.32±0.05</sup>, aligning with SE prediction in the early SE regime before transitioning to neutral scaling of <i>C</i><sup>–2.7±0.14</sup>, <i>C</i><sup>3.1±0.15</sup>, and <i>C</i><sup>2.35±0.07</sup> at an intermediate concentration between <i>C</i><sub>e</sub> and <i>C</i><sub>D</sub> labeled <i>C</i><sub>D</sub><sup>e</sup>. These results indicate that electrostatic interactions affect single entanglements and reptation differently, leading to a transition to neutral behavior at <i>C</i><sub><i>D</i></sub><sup>e</sup> for the former and at <i>C</i><sub>D</sub> for the latter.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"59 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143402013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction of “Temperature-Controlled Star-Shaped Cellulose Nanocrystal Assemblies Resulting from Asymmetric Polymer Grafting” 撤回 "不对称聚合物接枝产生的温控星形纤维素纳米晶体组装 "一文
IF 5.1
ACS Macro Letters Pub Date : 2025-02-13 DOI: 10.1021/acsmacrolett.4c0078710.1021/acsmacrolett.4c00787
Fangbo Lin, Fabrice Cousin, Jean-Luc Putaux and Bruno Jean*, 
{"title":"Retraction of “Temperature-Controlled Star-Shaped Cellulose Nanocrystal Assemblies Resulting from Asymmetric Polymer Grafting”","authors":"Fangbo Lin,&nbsp;Fabrice Cousin,&nbsp;Jean-Luc Putaux and Bruno Jean*,&nbsp;","doi":"10.1021/acsmacrolett.4c0078710.1021/acsmacrolett.4c00787","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00787https://doi.org/10.1021/acsmacrolett.4c00787","url":null,"abstract":"","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"14 3","pages":"258 258"},"PeriodicalIF":5.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143635857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction of “Temperature-Controlled Star-Shaped Cellulose Nanocrystal Assemblies Resulting from Asymmetric Polymer Grafting”
IF 5.8
ACS Macro Letters Pub Date : 2025-02-13 DOI: 10.1021/acsmacrolett.4c00787
Fangbo Lin, Fabrice Cousin, Jean-Luc Putaux, Bruno Jean
{"title":"Retraction of “Temperature-Controlled Star-Shaped Cellulose Nanocrystal Assemblies Resulting from Asymmetric Polymer Grafting”","authors":"Fangbo Lin, Fabrice Cousin, Jean-Luc Putaux, Bruno Jean","doi":"10.1021/acsmacrolett.4c00787","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00787","url":null,"abstract":"The authors, Fabrice Cousin, Jean-Luc Putaux, and Bruno Jean, retract this article (DOI: 10.1021/acsmacrolett.8b01005) due to significant concerns regarding the integrity and reliability of the data presented. Specifically, the TEM images in the article show signs of manipulation, including the presence of repeated fragments and the use of the clone stamp tool applied with some image editing software. These issues compromise the validity of the main conclusions drawn in the study. The first author of the article, Fangbo Lin, was also contacted regarding the issue but did not reply. The original Letter was published on March 11, 2019, and retracted on February 13, 2025. This article has not yet been cited by other publications.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"63 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143402017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scaling Behavior of Entanglement Dynamics in Polyelectrolyte Solutions: Insights from High-Frequency Rheometry
IF 5.1
ACS Macro Letters Pub Date : 2025-02-13 DOI: 10.1021/acsmacrolett.4c0072210.1021/acsmacrolett.4c00722
Yahya Rharbi*, 
{"title":"Scaling Behavior of Entanglement Dynamics in Polyelectrolyte Solutions: Insights from High-Frequency Rheometry","authors":"Yahya Rharbi*,&nbsp;","doi":"10.1021/acsmacrolett.4c0072210.1021/acsmacrolett.4c00722","DOIUrl":"https://doi.org/10.1021/acsmacrolett.4c00722https://doi.org/10.1021/acsmacrolett.4c00722","url":null,"abstract":"<p >Entanglement dynamics in polyelectrolyte solutions remain a challenging topic, particularly in capturing the entire dynamic spectrum, from single entanglement relaxation (τ<sub>e</sub>) to reptation time (τ<sub>rep</sub>), and aligning these observations with scaling predictions in the semidilute entangled (SE) and fully entangled (FE) neutral regimes. Using piezo compressional and classic rotational rheometry, we investigate the scaling behaviors of key viscoelastic properties over several decades of time scales in ten million Mw cationic polyacrylamide solutions. Specific viscosity (η<sub>sp</sub>) and τ<sub>rep</sub> scale as predicted within Fuoss, SE, and FE regimes, defining crossover concentrations between these regimes (<i>C</i><sub>e</sub> and <i>C</i><sub>D</sub>). More importantly, τ<sub>e</sub>, the rubbery plateau width (τ<sub>rep</sub>/τ<sub>e</sub>), and the high-frequency modulus (<i>G</i><sub>e</sub>) scale as <i>C</i><sup>–1.14±0.02</sup>, <i>C</i><sup>1.25±0.07</sup>, and <i>C</i><sup>1.32±0.05</sup>, aligning with SE prediction in the early SE regime before transitioning to neutral scaling of <i>C</i><sup>–2.7±0.14</sup>, <i>C</i><sup>3.1±0.15</sup>, and <i>C</i><sup>2.35±0.07</sup> at an intermediate concentration between <i>C</i><sub>e</sub> and <i>C</i><sub>D</sub> labeled <i>C</i><sub>D</sub><sup>e</sup>. These results indicate that electrostatic interactions affect single entanglements and reptation differently, leading to a transition to neutral behavior at <i>C</i><sub><i>D</i></sub><sup>e</sup> for the former and at <i>C</i><sub>D</sub> for the latter.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"14 3","pages":"259–264 259–264"},"PeriodicalIF":5.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143635856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信