Molecular Systems Biology最新文献

筛选
英文 中文
Correction of a widespread bias in pooled chemical genomics screens improves their interpretability. 纠正集合化学基因组学筛选中的普遍偏差,提高其可解释性。
IF 8.5 1区 生物学
Molecular Systems Biology Pub Date : 2024-11-01 Epub Date: 2024-09-30 DOI: 10.1038/s44320-024-00069-y
Lili M Kim, Horia Todor, Carol A Gross
{"title":"Correction of a widespread bias in pooled chemical genomics screens improves their interpretability.","authors":"Lili M Kim, Horia Todor, Carol A Gross","doi":"10.1038/s44320-024-00069-y","DOIUrl":"10.1038/s44320-024-00069-y","url":null,"abstract":"<p><p>Chemical genomics is a powerful and increasingly accessible technique to probe gene function, gene-gene interactions, and antibiotic synergies and antagonisms. Indeed, multiple large-scale pooled datasets in diverse organisms have been published. Here, we identify an artifact arising from uncorrected differences in the number of cell doublings between experiments within such datasets. We demonstrate that this artifact is widespread, show how it causes spurious gene-gene and drug-drug correlations, and present a simple but effective post hoc method for removing its effects. Using several published datasets, we demonstrate that this correction removes spurious correlations between genes and conditions, improving data interpretability and revealing new biological insights. Finally, we determine experimental factors that predispose a dataset for this artifact and suggest a set of experimental and computational guidelines for performing pooled chemical genomics experiments that will maximize the potential of this powerful technique.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"1173-1186"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Predictive evolution of metabolic phenotypes using model-designed environments. 作者更正:利用模型设计的环境预测代谢表型的进化。
IF 8.5 1区 生物学
Molecular Systems Biology Pub Date : 2024-11-01 DOI: 10.1038/s44320-024-00066-1
Paula Jouhten, Dimitrios Konstantinidis, Filipa Pereira, Sergej Andrejev, Kristina Grkovska, Sandra Castillo, Payam Ghiaci, Gemma Beltran, Eivind Almaas, Albert Mas, Jonas Warringer, Ramon Gonzalez, Pilar Morales, Kiran R Patil
{"title":"Author Correction: Predictive evolution of metabolic phenotypes using model-designed environments.","authors":"Paula Jouhten, Dimitrios Konstantinidis, Filipa Pereira, Sergej Andrejev, Kristina Grkovska, Sandra Castillo, Payam Ghiaci, Gemma Beltran, Eivind Almaas, Albert Mas, Jonas Warringer, Ramon Gonzalez, Pilar Morales, Kiran R Patil","doi":"10.1038/s44320-024-00066-1","DOIUrl":"10.1038/s44320-024-00066-1","url":null,"abstract":"","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"1260"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of the 3D cancer genome from whole-genome sequencing using InfoHiC. 利用 InfoHiC 从全基因组测序预测三维癌症基因组。
IF 8.5 1区 生物学
Molecular Systems Biology Pub Date : 2024-11-01 Epub Date: 2024-09-25 DOI: 10.1038/s44320-024-00065-2
Yeonghun Lee, Sung-Hye Park, Hyunju Lee
{"title":"Prediction of the 3D cancer genome from whole-genome sequencing using InfoHiC.","authors":"Yeonghun Lee, Sung-Hye Park, Hyunju Lee","doi":"10.1038/s44320-024-00065-2","DOIUrl":"10.1038/s44320-024-00065-2","url":null,"abstract":"<p><p>The 3D genome prediction in cancer is crucial for uncovering the impact of structural variations (SVs) on tumorigenesis, especially when they are present in noncoding regions. We present InfoHiC, a systemic framework for predicting the 3D cancer genome directly from whole-genome sequencing (WGS). InfoHiC utilizes contig-specific copy number encoding on the SV contig assembly, and performs a contig-to-total Hi-C conversion for the cancer Hi-C prediction from multiple SV contigs. We showed that InfoHiC can predict 3D genome folding from all types of SVs using breast cancer cell line data. We applied it to WGS data of patients with breast cancer and pediatric patients with medulloblastoma, and identified neo topologically associating domains. For breast cancer, we discovered super-enhancer hijacking events associated with oncogenic overexpression and poor survival outcomes. For medulloblastoma, we found SVs in noncoding regions that caused super-enhancer hijacking events of medulloblastoma driver genes (GFI1, GFI1B, and PRDM6). In addition, we provide trained models for cancer Hi-C prediction from WGS at https://github.com/dmcb-gist/InfoHiC , uncovering the impacts of SVs in cancer patients and revealing novel therapeutic targets.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"1156-1172"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535030/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteome-wide copy-number estimation from transcriptomics. 从转录组学估算整个蛋白质组的拷贝数
IF 8.5 1区 生物学
Molecular Systems Biology Pub Date : 2024-11-01 Epub Date: 2024-09-27 DOI: 10.1038/s44320-024-00064-3
Andrew J Sweatt, Cameron D Griffiths, Sarah M Groves, B Bishal Paudel, Lixin Wang, David F Kashatus, Kevin A Janes
{"title":"Proteome-wide copy-number estimation from transcriptomics.","authors":"Andrew J Sweatt, Cameron D Griffiths, Sarah M Groves, B Bishal Paudel, Lixin Wang, David F Kashatus, Kevin A Janes","doi":"10.1038/s44320-024-00064-3","DOIUrl":"10.1038/s44320-024-00064-3","url":null,"abstract":"<p><p>Protein copy numbers constrain systems-level properties of regulatory networks, but proportional proteomic data remain scarce compared to RNA-seq. We related mRNA to protein statistically using best-available data from quantitative proteomics and transcriptomics for 4366 genes in 369 cell lines. The approach starts with a protein's median copy number and hierarchically appends mRNA-protein and mRNA-mRNA dependencies to define an optimal gene-specific model linking mRNAs to protein. For dozens of cell lines and primary samples, these protein inferences from mRNA outmatch stringent null models, a count-based protein-abundance repository, empirical mRNA-to-protein ratios, and a proteogenomic DREAM challenge winner. The optimal mRNA-to-protein relationships capture biological processes along with hundreds of known protein-protein complexes, suggesting mechanistic relationships. We use the method to identify a viral-receptor abundance threshold for coxsackievirus B3 susceptibility from 1489 systems-biology infection models parameterized by protein inference. When applied to 796 RNA-seq profiles of breast cancer, inferred copy-number estimates collectively re-classify 26-29% of luminal tumors. By adopting a gene-centered perspective of mRNA-protein covariation across different biological contexts, we achieve accuracies comparable to the technical reproducibility of contemporary proteomics.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"1230-1256"},"PeriodicalIF":8.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dengue virus preferentially uses human and mosquito non-optimal codons. 登革热病毒优先使用人类和蚊子的非最佳密码子。
IF 8.5 1区 生物学
Molecular Systems Biology Pub Date : 2024-10-01 Epub Date: 2024-07-22 DOI: 10.1038/s44320-024-00052-7
Luciana A Castellano, Ryan J McNamara, Horacio M Pallarés, Andrea V Gamarnik, Diego E Alvarez, Ariel A Bazzini
{"title":"Dengue virus preferentially uses human and mosquito non-optimal codons.","authors":"Luciana A Castellano, Ryan J McNamara, Horacio M Pallarés, Andrea V Gamarnik, Diego E Alvarez, Ariel A Bazzini","doi":"10.1038/s44320-024-00052-7","DOIUrl":"10.1038/s44320-024-00052-7","url":null,"abstract":"<p><p>Codon optimality refers to the effect that codon composition has on messenger RNA (mRNA) stability and translation level and implies that synonymous codons are not silent from a regulatory point of view. Here, we investigated the adaptation of virus genomes to the host optimality code using mosquito-borne dengue virus (DENV) as a model. We demonstrated that codon optimality exists in mosquito cells and showed that DENV preferentially uses nonoptimal (destabilizing) codons and avoids codons that are defined as optimal (stabilizing) in either human or mosquito cells. Human genes enriched in the codons preferentially and frequently used by DENV are upregulated during infection, and so is the tRNA decoding the nonoptimal and DENV preferentially used codon for arginine. We found that adaptation during single-host passaging in human or mosquito cells results in the selection of synonymous mutations towards DENV's preferred nonoptimal codons that increase virus fitness. Finally, our analyses revealed that hundreds of viruses preferentially use nonoptimal codons, with those infecting a single host displaying an even stronger bias, suggesting that host-pathogen interaction shapes virus-synonymous codon choice.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"1085-1108"},"PeriodicalIF":8.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450187/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yeast9: a consensus genome-scale metabolic model for S. cerevisiae curated by the community. Yeast9:由社区编辑的 S. cerevisiae 共识基因组尺度代谢模型。
IF 8.5 1区 生物学
Molecular Systems Biology Pub Date : 2024-10-01 Epub Date: 2024-08-12 DOI: 10.1038/s44320-024-00060-7
Chengyu Zhang, Benjamín J Sánchez, Feiran Li, Cheng Wei Quan Eiden, William T Scott, Ulf W Liebal, Lars M Blank, Hendrik G Mengers, Mihail Anton, Albert Tafur Rangel, Sebastián N Mendoza, Lixin Zhang, Jens Nielsen, Hongzhong Lu, Eduard J Kerkhoven
{"title":"Yeast9: a consensus genome-scale metabolic model for S. cerevisiae curated by the community.","authors":"Chengyu Zhang, Benjamín J Sánchez, Feiran Li, Cheng Wei Quan Eiden, William T Scott, Ulf W Liebal, Lars M Blank, Hendrik G Mengers, Mihail Anton, Albert Tafur Rangel, Sebastián N Mendoza, Lixin Zhang, Jens Nielsen, Hongzhong Lu, Eduard J Kerkhoven","doi":"10.1038/s44320-024-00060-7","DOIUrl":"10.1038/s44320-024-00060-7","url":null,"abstract":"<p><p>Genome-scale metabolic models (GEMs) can facilitate metabolism-focused multi-omics integrative analysis. Since Yeast8, the yeast-GEM of Saccharomyces cerevisiae, published in 2019, has been continuously updated by the community. This has increased the quality and scope of the model, culminating now in Yeast9. To evaluate its predictive performance, we generated 163 condition-specific GEMs constrained by single-cell transcriptomics from osmotic pressure or reference conditions. Comparative flux analysis showed that yeast adapting to high osmotic pressure benefits from upregulating fluxes through central carbon metabolism. Furthermore, combining Yeast9 with proteomics revealed metabolic rewiring underlying its preference for nitrogen sources. Lastly, we created strain-specific GEMs (ssGEMs) constrained by transcriptomics for 1229 mutant strains. Well able to predict the strains' growth rates, fluxomics from those large-scale ssGEMs outperformed transcriptomics in predicting functional categories for all studied genes in machine learning models. Based on those findings we anticipate that Yeast9 will continue to empower systems biology studies of yeast metabolism.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"1134-1150"},"PeriodicalIF":8.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450192/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rescuing error control in crosslinking mass spectrometry. 挽救交联质谱中的误差控制。
IF 8.5 1区 生物学
Molecular Systems Biology Pub Date : 2024-09-01 Epub Date: 2024-08-02 DOI: 10.1038/s44320-024-00057-2
Lutz Fischer, Juri Rappsilber
{"title":"Rescuing error control in crosslinking mass spectrometry.","authors":"Lutz Fischer, Juri Rappsilber","doi":"10.1038/s44320-024-00057-2","DOIUrl":"10.1038/s44320-024-00057-2","url":null,"abstract":"<p><p>Crosslinking mass spectrometry is a powerful tool to study protein-protein interactions under native or near-native conditions in complex mixtures. Through novel search controls, we show how biassing results towards likely correct proteins can subtly undermine error estimation of crosslinks, with significant consequences. Without adjustments to address this issue, we have misidentified an average of 260 interspecies protein-protein interactions across 16 analyses in which we synthetically mixed data of different species, misleadingly suggesting profound biological connections that do not exist. We also demonstrate how data analysis procedures can be tested and refined to restore the integrity of the decoy-false positive relationship, a crucial element for reliably identifying protein-protein interactions.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"1076-1084"},"PeriodicalIF":8.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution and stability of complex microbial communities driven by trade-offs. 权衡利弊驱动复杂微生物群落的进化和稳定。
IF 8.5 1区 生物学
Molecular Systems Biology Pub Date : 2024-09-01 Epub Date: 2024-07-03 DOI: 10.1038/s44320-024-00051-8
Yanqing Huang, Avik Mukherjee, Severin Schink, Nina Catherine Benites, Markus Basan
{"title":"Evolution and stability of complex microbial communities driven by trade-offs.","authors":"Yanqing Huang, Avik Mukherjee, Severin Schink, Nina Catherine Benites, Markus Basan","doi":"10.1038/s44320-024-00051-8","DOIUrl":"10.1038/s44320-024-00051-8","url":null,"abstract":"<p><p>Microbial communities are ubiquitous in nature and play an important role in ecology and human health. Cross-feeding is thought to be core to microbial communities, though it remains unclear precisely why it emerges. Why have multi-species microbial communities evolved in many contexts and what protects microbial consortia from invasion? Here, we review recent insights into the emergence and stability of coexistence in microbial communities. A particular focus is the long-term evolutionary stability of coexistence, as observed for microbial communities that spontaneously evolved in the E. coli long-term evolution experiment (LTEE). We analyze these findings in the context of recent work on trade-offs between competing microbial objectives, which can constitute a mechanistic basis for the emergence of coexistence. Coexisting communities, rather than monocultures of the 'fittest' single strain, can form stable endpoints of evolutionary trajectories. Hence, the emergence of coexistence might be an obligatory outcome in the evolution of microbial communities. This implies that rather than embodying fragile metastable configurations, some microbial communities can constitute formidable ecosystems that are difficult to disrupt.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"997-1005"},"PeriodicalIF":8.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369148/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-resolved interactome profiling deconvolutes secretory protein quality control dynamics. 时间分辨相互作用组剖析解构了分泌蛋白质量控制动态。
IF 8.5 1区 生物学
Molecular Systems Biology Pub Date : 2024-09-01 Epub Date: 2024-08-05 DOI: 10.1038/s44320-024-00058-1
Madison T Wright, Bibek Timalsina, Valeria Garcia Lopez, Jake N Hermanson, Sarah Garcia, Lars Plate
{"title":"Time-resolved interactome profiling deconvolutes secretory protein quality control dynamics.","authors":"Madison T Wright, Bibek Timalsina, Valeria Garcia Lopez, Jake N Hermanson, Sarah Garcia, Lars Plate","doi":"10.1038/s44320-024-00058-1","DOIUrl":"10.1038/s44320-024-00058-1","url":null,"abstract":"<p><p>Many cellular processes are governed by protein-protein interactions that require tight spatial and temporal regulation. Accordingly, it is necessary to understand the dynamics of these interactions to fully comprehend and elucidate cellular processes and pathological disease states. To map de novo protein-protein interactions with time resolution at an organelle-wide scale, we developed a quantitative mass spectrometry method, time-resolved interactome profiling (TRIP). We apply TRIP to elucidate aberrant protein interaction dynamics that lead to the protein misfolding disease congenital hypothyroidism. We deconvolute altered temporal interactions of the thyroid hormone precursor thyroglobulin with pathways implicated in hypothyroidism pathophysiology, such as Hsp70-/90-assisted folding, disulfide/redox processing, and N-glycosylation. Functional siRNA screening identified VCP and TEX264 as key protein degradation components whose inhibition selectively rescues mutant prohormone secretion. Ultimately, our results provide novel insight into the temporal coordination of protein homeostasis, and our TRIP method should find broad applications in investigating protein-folding diseases and cellular processes.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"1049-1075"},"PeriodicalIF":8.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369088/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteome-scale characterisation of motif-based interactome rewiring by disease mutations. 以蛋白质组尺度描述疾病突变导致的基于主题的相互作用组重配。
IF 8.5 1区 生物学
Molecular Systems Biology Pub Date : 2024-09-01 Epub Date: 2024-07-15 DOI: 10.1038/s44320-024-00055-4
Johanna Kliche, Leandro Simonetti, Izabella Krystkowiak, Hanna Kuss, Marcel Diallo, Emma Rask, Jakob Nilsson, Norman E Davey, Ylva Ivarsson
{"title":"Proteome-scale characterisation of motif-based interactome rewiring by disease mutations.","authors":"Johanna Kliche, Leandro Simonetti, Izabella Krystkowiak, Hanna Kuss, Marcel Diallo, Emma Rask, Jakob Nilsson, Norman E Davey, Ylva Ivarsson","doi":"10.1038/s44320-024-00055-4","DOIUrl":"10.1038/s44320-024-00055-4","url":null,"abstract":"<p><p>Whole genome and exome sequencing are reporting on hundreds of thousands of missense mutations. Taking a pan-disease approach, we explored how mutations in intrinsically disordered regions (IDRs) break or generate protein interactions mediated by short linear motifs. We created a peptide-phage display library tiling ~57,000 peptides from the IDRs of the human proteome overlapping 12,301 single nucleotide variants associated with diverse phenotypes including cancer, metabolic diseases and neurological diseases. By screening 80 human proteins, we identified 366 mutation-modulated interactions, with half of the mutations diminishing binding, and half enhancing binding or creating novel interaction interfaces. The effects of the mutations were confirmed by affinity measurements. In cellular assays, the effects of motif-disruptive mutations were validated, including loss of a nuclear localisation signal in the cell division control protein CDC45 by a mutation associated with Meier-Gorlin syndrome. The study provides insights into how disease-associated mutations may perturb and rewire the motif-based interactome.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":"1025-1048"},"PeriodicalIF":8.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信