Mutagenesis最新文献

筛选
英文 中文
Impact of experimental design factors on the potency of genotoxicants in in vitro tests. 实验设计因素对基因毒物体外试验效力的影响。
IF 2.7 4区 医学
Mutagenesis Pub Date : 2022-12-08 DOI: 10.1093/mutage/geac025
Julie Sanders, Anouck Thienpont, Roel Anthonissen, Tamara Vanhaecke, Birgit Mertens
{"title":"Impact of experimental design factors on the potency of genotoxicants in in vitro tests.","authors":"Julie Sanders,&nbsp;Anouck Thienpont,&nbsp;Roel Anthonissen,&nbsp;Tamara Vanhaecke,&nbsp;Birgit Mertens","doi":"10.1093/mutage/geac025","DOIUrl":"https://doi.org/10.1093/mutage/geac025","url":null,"abstract":"<p><p>Previous studies have shown that differences in experimental design factors may alter the potency of genotoxic compounds in in vitro genotoxicity tests. Most of these studies used traditional statistical methods based on the lowest observed genotoxic effect levels, whereas more appropriate methods, such as the benchmark dose (BMD) approach, are now available to compare genotoxic potencies under different test conditions. We therefore investigated the influence of two parameters, i.e. cell type and exposure duration, on the potencies of two known genotoxicants [aflatoxin B1 and ethyl methanesulfonate (EMS)] in the in vitro micronucleus (MN) assay and comet assay (CA). Both compounds were tested in the two assays using two cell types (i.e. CHO-K1 and TK6 cells). To evaluate the effect of exposure duration, the genotoxicity of EMS was assessed after 3 and 24 h of exposure. Results were analyzed using the BMD covariate approach, also referred to as BMD potency ranking, and the outcome was compared with that of more traditional statistical methods based on lowest observed genotoxic effect levels. When comparing the in vitro MN results obtained in both cell lines with the BMD covariate approach, a difference in potency was detected only when EMS exposures were conducted for 24 h, with TK6 cells being more sensitive. No difference was observed in the potency of both EMS and aflatoxin B1 in the in vitro CA using both cell lines. In contrast, EMS was more potent after 24 h exposure compared with a 3 h exposure under all tested conditions, i.e. in the in vitro MN assay and CA in both cell lines. Importantly, for several of the investigated factors, the BMD covariate method could not be used to confirm the differences in potencies detected with the traditional statistical methods, thus highlighting the need to evaluate the impact of experimental design factors with adequate approaches.</p>","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":"37 5-6","pages":"248-258"},"PeriodicalIF":2.7,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10799084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Ex vivo explant model of adenoma and colorectal cancer to explore mechanisms of action and patient response to cancer prevention therapies. 腺瘤和结直肠癌离体移植模型探讨作用机制和患者对癌症预防治疗的反应。
IF 2.7 4区 医学
Mutagenesis Pub Date : 2022-12-08 DOI: 10.1093/mutage/geac020
Sam Khan, Gareth J Miles, Constantinos Demetriou, Zahirah Sidat, Nalini Foreman, Kevin West, Ankur Karmokar, Lynne Howells, Catrin Pritchard, Anne L Thomas, Karen Brown
{"title":"Ex vivo explant model of adenoma and colorectal cancer to explore mechanisms of action and patient response to cancer prevention therapies.","authors":"Sam Khan,&nbsp;Gareth J Miles,&nbsp;Constantinos Demetriou,&nbsp;Zahirah Sidat,&nbsp;Nalini Foreman,&nbsp;Kevin West,&nbsp;Ankur Karmokar,&nbsp;Lynne Howells,&nbsp;Catrin Pritchard,&nbsp;Anne L Thomas,&nbsp;Karen Brown","doi":"10.1093/mutage/geac020","DOIUrl":"https://doi.org/10.1093/mutage/geac020","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is the second leading cause of cancer death in the UK. Novel therapeutic prevention strategies to inhibit the development and progression of CRC would be invaluable. Potential contenders include low toxicity agents such as dietary-derived agents or repurposed drugs. However, in vitro and in vivo models used in drug development often do not take into account the heterogeneity of tumours or the tumour microenvironment. This limits translation to a clinical setting. Our objectives were to develop an ex vivo method utilizing CRC and adenoma patient-derived explants (PDEs) which facilitates screening of drugs, assessment of toxicity, and efficacy. Our aims were to use a multiplexed immunofluorescence approach to demonstrate the viability of colorectal tissue PDEs, and the ability to assess immune cell composition and interactions. Using clinically achievable concentrations of curcumin, we show a correlation between curcumin-induced tumour and stromal apoptosis (P < .001) in adenomas and cancers; higher stromal content is associated with poorer outcomes. B cell (CD20+ve) and T cell (CD3+ve) density of immune cells within tumour regions in control samples correlated with curcumin-induced tumour apoptosis (P < .001 and P < .05, respectively), suggesting curcumin-induced apoptosis is potentially predicted by baseline measures of immune cells. A decrease in distance between T cells (CD3+ve) and cytokeratin+ve cells was observed, indicating movement of T cells (CD3+ve) towards the tumour margin (P < .001); this change is consistent with an immune environment associated with improved outcomes. Concurrently, an increase in distance between T cells (CD3+ve) and B cells (CD20+ve) was detected following curcumin treatment (P < .001), which may result in a less immunosuppressive tumour milieu. The colorectal tissue PDE model offers significant potential for simultaneously assessing multiple biomarkers in response to drug exposure allowing a greater understanding of mechanisms of action and efficacy in relevant target tissues, that maintain both their structural integrity and immune cell compartments.</p>","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":"37 5-6","pages":"227-237"},"PeriodicalIF":2.7,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730503/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9115885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
DNA damage in peripheral blood lymphocytes of severely ill COVID-19 patients in relation to inflammatory markers and parameters of hemostasis. 重症COVID-19患者外周血淋巴细胞DNA损伤与炎症标志物和止血参数的关系
IF 2.7 4区 医学
Mutagenesis Pub Date : 2022-10-26 DOI: 10.1093/mutage/geac011
Olgica Mihaljevic,Snezana Zivancevic-Simonovic,Vojislav Cupurdija,Milos Marinkovic,Jovana Tubic Vukajlovic,Aleksandra Markovic,Marijana Stanojevic-Pirkovic,Olivera Milosevic-Djordjevic
{"title":"DNA damage in peripheral blood lymphocytes of severely ill COVID-19 patients in relation to inflammatory markers and parameters of hemostasis.","authors":"Olgica Mihaljevic,Snezana Zivancevic-Simonovic,Vojislav Cupurdija,Milos Marinkovic,Jovana Tubic Vukajlovic,Aleksandra Markovic,Marijana Stanojevic-Pirkovic,Olivera Milosevic-Djordjevic","doi":"10.1093/mutage/geac011","DOIUrl":"https://doi.org/10.1093/mutage/geac011","url":null,"abstract":"Bearing in the mind that a variety of agents can contribute to genome instability, including viral infections, the aim of this study was to analyze DNA damage in hospitalized COVID-19 patients and its relationship with certain laboratory parameters. The potential impact of applied therapy and chest X-rays on DNA damage was also estimated. The study population included 24 severely COVID-19 patients and 15 healthy control subjects. The level of DNA damage was measured as genetic damage index (GDI) by comet assay. The standard laboratory methods and certified enzymatic reagents for the appropriate autoanalyzers were performed for the determination of the biochemical and hematological parameters. COVID-19 patients had significantly higher level of DNA damage compared with control subjects. The absolute number of neutrophil leukocytes was statistically higher, while the absolute number of lymphocytes was statistically lower in COVID-19 patients than in healthy controls. The analysis of the relationship between DNA damage and laboratory parameters indicated that GDI was positively correlated with interleukin 6 (IL-6) concentration and negatively with platelet count in COVID-19 patients. The level of DNA damage was slightly higher in female patients, in whom it was demonstrated a positive correlation of GDI with C-reactive protein (CRP) and procalcitonin. Likewise, there was a negative relationship of GDI and platelet count, and positive relationship of GDI and activated partial thromboplastin time (aPTT) in female population. The applied therapy (antibiotics, corticosteroid, anticoagulant, and antiviral therapy) as well as chest X rays has been shown to have genotoxic potential. The level of DNA damage significantly corresponds to the inflammatory markers and parameters of hemostasis in COVID-19 patients. In conclusion, inflammation, smoking habit, applied therapy, and chest X rays contribute to a higher level of DNA damage in COVID-19 patients.","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":"21 1","pages":"203-212"},"PeriodicalIF":2.7,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138518402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Optimizing machine-learning models for mutagenicity prediction through better feature selection. 优化机器学习模型,通过更好的特征选择来预测突变性。
IF 2.7 4区 医学
Mutagenesis Pub Date : 2022-10-26 DOI: 10.1093/mutage/geac010
Nicolas K Shinada,Naoki Koyama,Megumi Ikemori,Tomoki Nishioka,Seiji Hitaoka,Atsushi Hakura,Shoji Asakura,Yukiko Matsuoka,Sucheendra K Palaniappan
{"title":"Optimizing machine-learning models for mutagenicity prediction through better feature selection.","authors":"Nicolas K Shinada,Naoki Koyama,Megumi Ikemori,Tomoki Nishioka,Seiji Hitaoka,Atsushi Hakura,Shoji Asakura,Yukiko Matsuoka,Sucheendra K Palaniappan","doi":"10.1093/mutage/geac010","DOIUrl":"https://doi.org/10.1093/mutage/geac010","url":null,"abstract":"Assessing a compound's mutagenicity using machine learning is an important activity in the drug discovery and development process. Traditional methods of mutagenicity detection, such as Ames test, are expensive and time and labor intensive. In this context, in silico methods that predict a compound mutagenicity with high accuracy are important. Recently, machine-learning (ML) models are increasingly being proposed to improve the accuracy of mutagenicity prediction. While these models are used in practice, there is further scope to improve the accuracy of these models. We hypothesize that choosing the right features to train the model can further lead to better accuracy. We systematically consider and evaluate a combination of novel structural and molecular features which have the maximal impact on the accuracy of models. We rigorously evaluate these features against multiple classification models (from classical ML models to deep neural network models). The performance of the models was assessed using 5- and 10-fold cross-validation and we show that our approach using the molecule structure, molecular properties, and structural alerts as feature sets successfully outperform the state-of-the-art methods for mutagenicity prediction for the Hansen et al. benchmark dataset with an area under the receiver operating characteristic curve of 0.93. More importantly, our framework shows how combining features could benefit model accuracy improvements.","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":"25 1","pages":"191-202"},"PeriodicalIF":2.7,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138515849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A novel in vitro 3D model of the human bone marrow to bridge the gap between in vitro and in vivo genotoxicity testing. 一种新的体外人类骨髓三维模型,以弥合体外和体内遗传毒性测试之间的差距。
IF 2.7 4区 医学
Mutagenesis Pub Date : 2022-05-04 DOI: 10.1093/mutage/geac009
Alexander R Vernon,Roy M Pemberton,H Ruth Morse
{"title":"A novel in vitro 3D model of the human bone marrow to bridge the gap between in vitro and in vivo genotoxicity testing.","authors":"Alexander R Vernon,Roy M Pemberton,H Ruth Morse","doi":"10.1093/mutage/geac009","DOIUrl":"https://doi.org/10.1093/mutage/geac009","url":null,"abstract":"The regulatory 2D in vitro micronucleus (MN) assay is part of a battery of tests, used to test for genotoxicity of new and existing compounds before they are assessed in vivo (ICH S2). The 2D MN assay consists of a monolayer of cells, whereas the in vivo bone marrow (BM) setting comprises a multicellular environment within a three-dimensional extracellular matrix. Although the in vitro MN assay follows a robust protocol set out by the Organisation for Economic Co-operation and Development (OECD) to comply with regulatory bodies, some compounds have been identified as negative genotoxicants within the in vitro MN assay but marginally positive when assessed in vivo. The glucocorticoids, which are weakly positive in vivo, have generally been suggested to pose no long-term carcinogenic risk; however, for novel compounds of unknown activity, improved prediction of genotoxicity is imperative. To help address this observation, we describe a novel 3D in vitro assay which aims to replicate the results seen within the in vivo BM microenvironment. AlgiMatrix scaffolds were optimized for seeding with HS-5 human BM stromal cells as a BM microenvironment, to which the human lymphoblast cell line TK6 was added. An MN assay was performed aligning with the 2D regulatory assay protocol. Utilizing this novel 3D in vitro model of the BM, known genotoxicants (mitomycin C, etoposide, and paclitaxel), a negative control (caffeine), and in vivo positive glucocorticoids (dexamethasone and prednisolone) were investigated for the induction of MN. It was found, in agreement with historical in vivo data, that the model could accurately predict the in vivo outcome of the glucocorticoids, unlike the regulatory 2D in vitro MN assay. These preliminary results suggest our 3D MN assay may better predict the outcome of in vivo MN tests, compared with the standard 2D assay.","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":"62 2 1","pages":"112-129"},"PeriodicalIF":2.7,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138518396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The role of human umbilical cord mesenchymal stem cells-derived exosomal microRNA-431-5p in survival and prognosis of colorectal cancer patients. 人脐带间充质干细胞来源的外泌体microRNA-431-5p在结直肠癌患者生存和预后中的作用
IF 2.7 4区 医学
Mutagenesis Pub Date : 2022-05-04 DOI: 10.1093/mutage/geac007
Muwen Qu, Junyi Li, Zifu Hong, Fei Jia, Yinghua He, Lingling Yuan
{"title":"The role of human umbilical cord mesenchymal stem cells-derived exosomal microRNA-431-5p in survival and prognosis of colorectal cancer patients.","authors":"Muwen Qu,&nbsp;Junyi Li,&nbsp;Zifu Hong,&nbsp;Fei Jia,&nbsp;Yinghua He,&nbsp;Lingling Yuan","doi":"10.1093/mutage/geac007","DOIUrl":"https://doi.org/10.1093/mutage/geac007","url":null,"abstract":"<p><p>We aim to discuss the role of miR-431-5p in colorectal cancer (CRC) progression via regulating peroxiredoxin 1 (PRDX1). miR-431-5p and PRDX1 expression were detected in CRC tissues and cells, and the relationship between miR-431-5p expression and prognosis of CRC patients was analyzed. Exosomes were extracted from human umbilical cord mesenchymal stem cells (hUCMSCs) and co-cultured with LoVo cells. MTT assay, flow cytometry and Transwell assay were implemented to test cell viability, apoptosis and invasion and migration ability, respectively. The tumor growth was determined as well, and the binding relation between miR-431-5p and PRDX1 was confirmed. miR-431-5p was downregulated and PRDX1 was upregulated in CRC, and miR-431-5p downregulation was associated with poor prognosis. hUCMSC-Exos suppressed the malignant behaviors of LoVo cells, and overexpression of miR-431-5p further aggravated the inhibitory effect of hUCMSC-Exos on LoVo cells. hUCMSC-Exos inhibited PRDX1 expression via miR-431-5p. PRDX1 was targeted by miR-431-5p. miR-431-5p serves as a prognostic biomarker in CRC, and hUCMSC-Exos transfer of miR-431-5p decelerates CRC cell growth by inhibiting PRDX1.</p>","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":"37 2","pages":"164-171"},"PeriodicalIF":2.7,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10247993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
The mitochondrial poison carbonyl cyanide 3-chlorophenyl hydrazone (CCCP) induces aneugenic effects in primary human fibroblasts: a possible link between mitochondrial dysfunction and chromosomal loss. 线粒体毒性羰基氰化物3-氯苯基腙(CCCP)在原代人成纤维细胞中诱导非优生效应:线粒体功能障碍与染色体丢失之间的可能联系。
IF 2.7 4区 医学
Mutagenesis Pub Date : 2022-04-20 DOI: 10.1093/mutage/geac008
F. Marcon, Francesca De Battistis, E. Siniscalchi, R. Crebelli, R. Meschini
{"title":"The mitochondrial poison carbonyl cyanide 3-chlorophenyl hydrazone (CCCP) induces aneugenic effects in primary human fibroblasts: a possible link between mitochondrial dysfunction and chromosomal loss.","authors":"F. Marcon, Francesca De Battistis, E. Siniscalchi, R. Crebelli, R. Meschini","doi":"10.1093/mutage/geac008","DOIUrl":"https://doi.org/10.1093/mutage/geac008","url":null,"abstract":"An association between proper chromosome segregation and intact mitochondria has been extensively reported. This could be related to the effects on the progression of cell division of altered energy production, increased oxidative stress, and deregulated calcium homeostasis. However, evidence for a direct relationship is still lacking. The present study was aimed at investigating the possible effect of mitochondrial dysfunction on chromosomal instability as detected in primary human cells treated with the mitochondrial poison carbonyl cyanide 3-chlorophenyl hydrazone (CCCP). Chromosome instability was analyzed in anaphase and interphase cells to follow the fate of chromosome damage during the progression of mitosis and the subsequent cell cycle. Through the combination of cytogenetic approaches and molecular analyses, i.e. morphological cell analysis, formation and characterization of micronucleus content, Comet assay, and gene expression, it was demonstrated that the prevalent DNA damage associated with CCCP treatment was the induction of chromosome loss, while primary DNA damage was not detected. No alterations in the shape of anaphase cells were observed nor induction of multipolar spindles. The proper activation of mitotic checkpoint was maintained. A linear dose-response curve characterizing the CCCP effects suggested that multiple cellular targets could be affected by the CCCP-induced mitochondrial dysfunctions triggering aneuploidy. Conversely, a steep increase was induced by the positive control vinblastine, known to have tubulin as a unique target. In addition, the effect of CCCP on mitochondrial function was demonstrated by changes in mitochondrial DNA copy number and in the expression of genes involved in mitochondrial maintenance. Overall, these results indicate that the mitochondrial poison CCCP may induce aneugenic effects.","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":"1 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60857483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Folate deficiency enhances the in vitro genotoxicity of bile acids in human colon and liver cells. 叶酸缺乏增强了胆汁酸在人结肠和肝细胞中的体外遗传毒性。
IF 2.7 4区 医学
Mutagenesis Pub Date : 2022-04-02 DOI: 10.1093/mutage/geab041
Jianfei Li, Cheng Zhang, Lingzhi Li, Xueqin Hu, Yizhen Jia, Yanan Huang, Ting Lyu, Xu Wang, Xihan Guo
{"title":"Folate deficiency enhances the in vitro genotoxicity of bile acids in human colon and liver cells.","authors":"Jianfei Li,&nbsp;Cheng Zhang,&nbsp;Lingzhi Li,&nbsp;Xueqin Hu,&nbsp;Yizhen Jia,&nbsp;Yanan Huang,&nbsp;Ting Lyu,&nbsp;Xu Wang,&nbsp;Xihan Guo","doi":"10.1093/mutage/geab041","DOIUrl":"https://doi.org/10.1093/mutage/geab041","url":null,"abstract":"<p><p>Obese subjects have a high baseline of genotoxic stress, but the underlying mechanism is poorly understood. Given that obesity is associated with high bile acids (BA) and low folate, we aimed to determine the interactive effect of folate deficient or supplementation to the genotoxicity and cytotoxicity of BA in human colon and liver cells. NCM460 and L-02 cells were cultured in folate-deficient (22.6 nM) and replete (2260 nM) Roswell Park Memorial Institute (RPMI)-1640 medium with or without 50 μM deoxycholic acid (DCA) or lithocholic acid (LCA) for 7 days. Moreover, these cells were cultured in folate supplemented (5.65, 11.3 and 22.6 μM) and standard (2.26 μM) medium with 200 μM DCA or LCA for 7 days. Genotoxicity and cytotoxicity were measured using the cytokinesis-block micronucleus cytome assay. Our results showed that under folate-replete condition, 50 μM DCA or LCA significantly increased the rate of micronuclei (MN) in NCM460 and L-02 cells. Significantly, the MN-inducing effect of 50 μM DCA or LCA was further enhanced by folate deficiency. Interestingly, folate supplementation exerted a dose-dependent manner to significantly decrease the rates of MN, nucleoplasmic bridges, nuclear buds, apoptosis, and necrosis induced by 200 μM DCA or LCA in NCM460 and L-02 cells. In conclusion, the genotoxicity of moderate BA (50 μM) was exacerbated by folate deficiency and folate supplementation could efficiently protect cells against the genotoxicity and cytotoxicity of high BA (200 μM).</p>","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":"37 1","pages":"34-43"},"PeriodicalIF":2.7,"publicationDate":"2022-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39634341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The suitability of micronuclei as markers of relative biological effect. 微核作为相对生物效应标记的适用性。
IF 2.7 4区 医学
Mutagenesis Pub Date : 2022-04-02 DOI: 10.1093/mutage/geac001
Charlotte J Heaven, Hannah C Wanstall, Nicholas T Henthorn, John-William Warmenhoven, Samuel P Ingram, Amy L Chadwick, Elham Santina, Jamie Honeychurch, Christine K Schmidt, Karen J Kirkby, Norman F Kirkby, Neil G Burnet, Michael J Merchant
{"title":"The suitability of micronuclei as markers of relative biological effect.","authors":"Charlotte J Heaven, Hannah C Wanstall, Nicholas T Henthorn, John-William Warmenhoven, Samuel P Ingram, Amy L Chadwick, Elham Santina, Jamie Honeychurch, Christine K Schmidt, Karen J Kirkby, Norman F Kirkby, Neil G Burnet, Michael J Merchant","doi":"10.1093/mutage/geac001","DOIUrl":"10.1093/mutage/geac001","url":null,"abstract":"<p><p>Micronucleus (MN) formation is routinely used as a biodosimeter for radiation exposures and has historically been used as a measure of DNA damage in cells. Strongly correlating with dose, MN are also suggested to indicate radiation quality, differentiating between particle and photon irradiation. The \"gold standard\" for measuring MN formation is Fenech's cytokinesis-block micronucleus (CBMN) cytome assay, which uses the cytokinesis blocking agent cytochalasin-B. Here, we present a comprehensive analysis of the literature investigating MN induction trends in vitro, collating 193 publications, with 2476 data points. Data were collected from original studies that used the CBMN assay to quantify MN in response to ionizing radiation in vitro. Overall, the meta-analysis showed that individual studies mostly have a linear increase of MN with dose [85% of MN per cell (MNPC) datasets and 89% of percentage containing MN (PCMN) datasets had an R2 greater than 0.90]. However, there is high variation between studies, resulting in a low R2 when data are combined (0.47 for MNPC datasets and 0.60 for PCMN datasets). Particle type, species, cell type, and cytochalasin-B concentration were suggested to influence MN frequency. However, variation in the data meant that the effects could not be strongly correlated with the experimental parameters investigated. There is less variation between studies when comparing the PCMN rather than the number of MNPC. Deviation from CBMN protocol specified timings did not have a large effect on MN induction. However, further analysis showed less variation between studies following Fenech's protocol closely, which provided more reliable results. By limiting the cell type and species as well as only selecting studies following the Fenech protocol, R2 was increased to 0.64 for both measures. We therefore determine that due to variation between studies, MN are currently a poor predictor of radiation-induced DNA damage and make recommendations for futures studies assessing MN to improve consistency between datasets.</p>","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":"37 1","pages":"3-12"},"PeriodicalIF":2.7,"publicationDate":"2022-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976228/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39901882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Folic acid deficiency increases sensitivity to DNA damage by glucose and methylglyoxal. 叶酸缺乏会增加对葡萄糖和甲基乙二醛损伤DNA的敏感性。
IF 2.7 4区 医学
Mutagenesis Pub Date : 2022-04-02 DOI: 10.1093/mutage/geac003
Leigh Donnellan, Bradley S Simpson, Varinderpal S Dhillon, Maurizio Costabile, Michael Fenech, Permal Deo
{"title":"Folic acid deficiency increases sensitivity to DNA damage by glucose and methylglyoxal.","authors":"Leigh Donnellan,&nbsp;Bradley S Simpson,&nbsp;Varinderpal S Dhillon,&nbsp;Maurizio Costabile,&nbsp;Michael Fenech,&nbsp;Permal Deo","doi":"10.1093/mutage/geac003","DOIUrl":"https://doi.org/10.1093/mutage/geac003","url":null,"abstract":"<p><p>Type 2 diabetes (T2D) is associated with elevated frequencies of micronuclei (MNi) and other DNA damage biomarkers. Interestingly, individuals with T2D are more likely to be deficient in micronutrients (folic acid, pyridoxal-phosphate, cobalamin) that play key roles in one-carbon metabolism and maintaining genomic integrity. Furthermore, it has recently been shown that deficiencies in these nutrients, in particular folic acid leaves cells susceptible to glucose-induced DNA damage. Therefore, we sought to investigate if the B lymphoblastoid WIL2-NS cell line cultured under folic acid-deficient conditions was more sensitive to DNA damage induced by glucose, or the reactive glycolytic byproduct methylglyoxal (MGO) and subsequent advanced glycation endproduct formation. Here, we show that only WIL2-NS cultured under folic acid-deficient conditions (23 nmol/l) experience an increase in MNi frequency when exposed to high concentrations of glucose (45 mmol/l) or MGO (100 µmol/l). Furthermore, we showed aminoguanidine, a well-validated MGO and free radical scavenger was able to prevent further MNi formation in folic acid-deficient cells exposed to high glucose, which may be due to a reduction in MGO-induced oxidative stress. Interestingly, we also observed an increase in MGO and other dicarbonyl stress biomarkers in folic acid-deficient cells, irrespective of glucose concentrations. Overall, our evidence shows that folic acid-deficient WIL2-NS cells are more susceptible to glucose and/or MGO-induced MNi formation. These results suggest that individuals with T2D experiencing hyperglycemia and folic acid deficiency may be at higher risk of chromosomal instability.</p>","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":"37 1","pages":"24-33"},"PeriodicalIF":2.7,"publicationDate":"2022-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9186029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39860125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信