Ebtesam A. Mohamad, Abeer A. Ali, Marwa Sharaky, Reem H. El-Gebaly
{"title":"Niosomes loading N-acetyl-L-cysteine for cancer treatment in vivo study","authors":"Ebtesam A. Mohamad, Abeer A. Ali, Marwa Sharaky, Reem H. El-Gebaly","doi":"10.1007/s00210-023-02893-9","DOIUrl":"https://doi.org/10.1007/s00210-023-02893-9","url":null,"abstract":"<p>Scientists are seeking to find an effective treatment for tumors that has no side effects. N-Acetyl-l-cysteine (NAC) is a thiol compound extracted from garlic. Current study explores the potential of NAC-loaded niosomes (NAC-NIO) for tumor treatment in mice. NAC-loaded niosomes’ efficiency, morphology, UV absorption, size distribution, zeta potential, release, and FTIR analysis were evaluated. For vivo study, 25 male BALB/c mice were divided to five groups: gp1 negative control (receive saline), gp2 positive control (tumor group), gp3 treated with NAC, gp4 treated with NAC-NIO at the same time of tumor injection, and gp5 treated with NAC-NIO after tumor growth (day 14). The impact of NAC-NIO on the tumor treatment was evaluated by measuring tumor size progress, comet assay, oxidative stress parameters (GSH, nitric oxide, MDA), western blot analysis, and histopathological investigation of tissues. NAC-NIO showed 72 ± 3% encapsulation efficiency and zeta potential − 5.95 mV with spherical shape. It was found that oral administration of NAC-NIO in a dose of 50 mg/kg provided significant protection against tumor cells. Our formulation decreases DNA injury significantly (<i>P</i> < 0.05). It was noticed that NAC-NIO can increase oxidative stress levels in tumor tissue. On the other hand, the caspase 3 and caspase 9 gene expression were upregulated significantly (<i>P</i> < 0.001) in mice administrated NAC-NIO compared with all other groups. Histological studies confirmed the protective effect of NAC-NIO against tumor especially for treatment during tumor growth protocol. The results suggested that oral delivery of NAC-NIO formulation improved antioxidant effect.</p>","PeriodicalId":18862,"journal":{"name":"Naunyn-schmiedebergs Archives of Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138629040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on the mechanism of vitamin E alleviating non-alcoholic fatty liver function based on non-targeted metabolomics analysis in rats","authors":"Baiyun Zhao, Jing Zhang, Kaiyue Zhao, Wenbin Zhao, Yajuan Shi, Jing Liu, Ling Zeng, Chaoxuan Wang, Xin Zeng, Junping Shi","doi":"10.1007/s00210-023-02864-0","DOIUrl":"https://doi.org/10.1007/s00210-023-02864-0","url":null,"abstract":"<p>Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome. Vitamin E (VE) has antioxidant properties and can mediate lipid metabolism. Non-targeted metabolomics technology was employed to uncover comprehensively the metabolome of VE in NAFLD rats. NAFLD model was created with a high-fat and high-cholesterol diet (HFD) in rats. NAFLD rats in the VE group were given 75 mg/(kg day) VE. The metabolites in the serum of rats were identified via UPLC and Q-TOF/MS analysis. KEGG was applied for the pathway enrichment. VE improved the liver function, lipid metabolism, and oxidative stress in NAFLD rats induced by HFD. Based on the metabolite profile data, 132 differential metabolites were identified between VE group and the HFD group, mainly including pyridoxamine, betaine, and bretylium. According to the KEGG results, biosynthesis of cofactors was a key metabolic pathway of VE in NAFLD rats. VE can alleviate NAFLD induced by HFD, and the underlying mechanism is associated with the biosynthesis of cofactors, mainly including pyridoxine and betaine.</p>","PeriodicalId":18862,"journal":{"name":"Naunyn-schmiedebergs Archives of Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138629053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prevention of colistin-induced neurotoxicity: a narrative review of preclinical data","authors":"Setareh Soroudi, Ghazal Mousavi, Fatemeh Jafari, Sepideh Elyasi","doi":"10.1007/s00210-023-02884-w","DOIUrl":"https://doi.org/10.1007/s00210-023-02884-w","url":null,"abstract":"<p>Polymyxin E or colistin is an effective antibiotic against MDR Gram-negative bacteria. Due to unwanted side effects, the use of this antibiotic has been limited for a long time, but in recent years, the widespread of MDR Gram-negative bacteria infections has led to its reintroduction. Neurotoxicity and nephrotoxicity are the significant dose-limiting adverse effects of colistin. Several agents with anti-inflammatory and antioxidant properties have been used for the prevention of colistin-induced neurotoxicity. This study aims to review the preclinical studies in this field to prepare guidance for future human studies. The data was achieved by searching PubMed, Scopus, and Google Scholar databases. All eligible pre-clinical studies performed on neuroprotective agents against colistin-induced neurotoxicity, which were published up to September 2023, were included. Finally, 16 studies (ten in vitro and eight in vivo) are reviewed. Apoptosis (in 13 studies), inflammatory (in four studies), and oxidative stress (in 14 studies) pathways are the most commonly reported pathways involved in colistin-induced neurotoxicity. The assessed compounds include non-herbal (e.g., ascorbic acid, rapamycin, and minocycline) and herbal (e.g., curcumin, rutin, baicalein, salidroside, and ginsenoside) agents. Besides these compounds, some other measures like transplantation of mitochondria and the use of nerve growth factor and mesenchymal stem cells could be motivating subjects for future research. Based on the data from experimental (in vitro and animal) studies, a combination of colistin with neuroprotective agents could prevent or decrease colistin-induced neurotoxicity. However, well-designed randomized clinical trials and human studies are essential for demonstrating efficacy.</p>","PeriodicalId":18862,"journal":{"name":"Naunyn-schmiedebergs Archives of Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138629403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Penghui Bu, Weipeng Xie, Sicheng Wang, Zhi Yang, Kan Peng, Weisong Zhang, Shouye Hu
{"title":"EGFL6 activates the ERK signaling to improve angiogenesis and osteogenesis of BMSCs in patients with steroid-induced osteonecrosis of the femoral head","authors":"Penghui Bu, Weipeng Xie, Sicheng Wang, Zhi Yang, Kan Peng, Weisong Zhang, Shouye Hu","doi":"10.1007/s00210-023-02880-0","DOIUrl":"https://doi.org/10.1007/s00210-023-02880-0","url":null,"abstract":"<p>Recently, epidermal growth factor-like domain protein 6 (<i>EGFL6</i>) was proposed as a candidate gene for coupling angiogenesis to osteogenesis during bone repair; however, the exact role and underlying mechanism are largely unknown. Here, using immunohistochemical and Western blotting analyses, we found that EGFL6 was downregulated in the femoral head tissue of patients with steroid-induced osteonecrosis of the femoral head (SONFH) compared to patients with traumatic femoral neck fracture (FNF), accompanied by significantly downregulation of osteogenic and angiogenic marker genes. Then, bone marrow mesenchymal stem cells (BMSCs) were isolated from the FNF and the SONFH patients, respectively, and after identification by immunofluorescence staining surface markers, the effect of EGFL6 on their abilities of osteogenic differentiation and angiogenesis was evaluated. Our results of alizarin red staining and tubular formation experiment revealed that BMSCs from the SONFH patients (SONFH-BMSCs) displayed an obviously weaker ability of osteogenesis than FNF-BMSCs, and EGFL6 overexpression improved the abilities of osteogenic differentiation and angiogenesis of SONFH-BMSCs. Moreover, EGFL6 overexpression activated extracellular signal-regulated kinases 1/2 (ERK1/2). ERK1/2 inhibitor U0126 reversed the promoting effect of EGFL6 overexpression on the expression of osteogenesis and angiogenesis-related genes in the SONFH femoral head. In conclusion, EGFL6 plays a protective role in SONFH, it promotes osteogenesis and angiogenesis of BMSCs, and its effect is likely to be related to ERK1/2 activation.</p>","PeriodicalId":18862,"journal":{"name":"Naunyn-schmiedebergs Archives of Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138573929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martha Ivonne Sánchez-Trigueros, Ivette Astrid Martínez-Vieyra, Elizabeth Arlen Pineda-Peña, Gilberto Castañeda-Hernández, Claudia Perez-Cruz, Doris Cerecedo, Aracely Evangelina Chávez-Piña
{"title":"Role of antioxidative activity in the docosahexaenoic acid’s enteroprotective effect in the indomethacin-induced small intestinal injury model","authors":"Martha Ivonne Sánchez-Trigueros, Ivette Astrid Martínez-Vieyra, Elizabeth Arlen Pineda-Peña, Gilberto Castañeda-Hernández, Claudia Perez-Cruz, Doris Cerecedo, Aracely Evangelina Chávez-Piña","doi":"10.1007/s00210-023-02881-z","DOIUrl":"https://doi.org/10.1007/s00210-023-02881-z","url":null,"abstract":"<p>Therapeutic effect of non-steroidal anti-inflammatory drugs (NSAIDs) has been related with gastrointestinal injury. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (PUFA), can prevent gastric and small intestinal damage. Nonetheless, contribution of antioxidative action in the protective effect of DHA has not been evaluated before in the small intestine injury after indomethacin treatment. Pathogenesis of NSAID-induced small intestinal injury is multifactorial, and reactive oxidative species have been related to indomethacin’s small intestinal damage. The present work aimed to evaluate antioxidative activity in the protective action of DHA in the indomethacin-induced small intestinal damage. Female Wistar rats were gavage with DHA (3 mg/kg) or omeprazole (3 mg/kg) for 10 days. Each rat received indomethacin (3 mg/kg, orally) daily to induce small intestinal damage. The total area of intestinal ulcers and histopathological analysis were performed. In DHA-treated rats, myeloperoxidase and superoxide dismutase activity, glutathione, malondialdehyde, leukotriene, and lipopolysaccharide (LPS) levels were measured. Furthermore, the relative abundance of selective bacteria was assessed. DHA administration (3 mg/kg, p.o.) caused a significant decrease in indomethacin-induced small intestinal injury in Wistar rats after 10 days of treatment. DHA’s enteroprotection resulted from the prevention of an increase in myeloperoxidase activity, and lipoperoxidation, as well as an improvement in the antioxidant defenses, such as glutathione levels and superoxide dismutase activity in the small intestine. Furthermore, we showed that DHA’s enteroprotective effect decreased significantly LPS levels in indomethacin-induced injury in small intestine. Our data suggest that DHA’s enteroprotective might be attributed to the prevention of oxidative stress.</p>","PeriodicalId":18862,"journal":{"name":"Naunyn-schmiedebergs Archives of Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138574154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gene therapy: an alternative to treat Alzheimer’s disease","authors":"Vanshika Doshi, Garima Joshi, Sanjay Sharma, Deepak Choudhary","doi":"10.1007/s00210-023-02873-z","DOIUrl":"https://doi.org/10.1007/s00210-023-02873-z","url":null,"abstract":"<p>Alzheimer’s disease (AD), a neuro-degenerative disease that primarily affects the elderly, is a worldwide phenomenon. Loss of memory, cognitive decline, behavioural changes, and many other signs are used to classify it. Various hypotheses that may contribute to Alzheimer’s disease have been found during decades of survey, including tau theory, the amyloid theory, the cholinergic hypothesis, and the oxidative stress hypothesis. According to some theories, the two leading causes of AD are the accumulation of amyloid beta plaque and development of NFTs in the brain. The hippocampus and cerebral cortex are the primary sites where amyloid beta plaques gather in the body. NFT formation in the brain impairs the brain’s neurons’ potential of signalling. According to the age at which it manifests in a person, there are two subtypes of AD: ‘LOAD (Late Onset Alzheimer’s Disease)’ and ‘EOAD (Early Onset Alzheimer’s Disease)’. Long-term research into AD treatment has resulted in the introduction of some medications that provided symptomatic relief to patients but did not alter the disease’s pathophysiology, like cholinesterase inhibitors, inhibitors of tau aggregation, and monoclonal antibodies to Aβ aggregation. Even though the medications did not halt the progression of AD, researchers did not discontinue their work, which lead to the introduction of gene therapy — a recently created cutting-edge method of delivering genes to target sites where they can express the intended functionalities. Viral or non-viral vectors could be used to deliver the gene, each with advantages and limitations of their own. Gene therapy is proven to be a potential disease-modifying treatment for AD. This article discusses about gene therapy, its merits and demerits and the various ways of gene delivery. Additionally, it focuses on AD as the target for treatment through gene therapy, the pathophysiology of AD, and the multiple targets for gene therapy in the treatment of AD.</p>","PeriodicalId":18862,"journal":{"name":"Naunyn-schmiedebergs Archives of Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138574321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Licochalcone A alleviates ferroptosis in doxorubicin-induced cardiotoxicity via the PI3K/AKT/MDM2/p53 pathway","authors":"Ganxiao Chen, Shunxiang Luo, Hongdou Guo, Jiayi Lin, Shanghua Xu","doi":"10.1007/s00210-023-02863-1","DOIUrl":"https://doi.org/10.1007/s00210-023-02863-1","url":null,"abstract":"<p>Licochalcone A (Lico A), a flavonoid found in licorice, possesses multiple pharmacological activities in modulating oxidative stress, glycemia, inflammation, and lipid metabolism. This study aimed to explore the potential mechanism of Lico A in mitigating ferroptosis associated with doxorubicin-induced cardiotoxicity (DIC). Initially, network pharmacology analysis was applied to identify the active components present in licorice and their targeted genes associated with DIC. Subsequently, to assess the role of Lico A in a DIC mouse model, electrocardiograms, myocardial injury markers, and myocardial histopathological changes were measured. Additionally, cell viability, reactive oxygen species (ROS), ferrous iron, glutathione/glutathione disulfide (GSH/GSSG), and malondialdehyde (MDA) were measured in the cell model as hallmarks of ferroptosis. Finally, the PI3K/AKT/MDM2/p53 signaling pathway and ferroptosis-related proteins were measured in vitro and in vivo. Bioinformatics results revealed that 8 major compounds of licorice, including Lico A, primarily regulated targets such as p53 and the PI3K/AKT signaling pathways in DIC. In the mouse model of DIC, Lico A significantly ameliorated serum biomarkers, histopathology, and electrocardiogram abnormalities. Pretreatment with Lico A enhanced the viability of H9C2 cells treated with doxorubicin. Furthermore, Lico A administration resulted in decreased levels of ROS, ferrous iron, and MDA and increased levels of GSH/GSSG. At the protein level, Lico A increased the phosphorylation of PI3K/AKT/MDM2, reduced p53 accumulation, and induced the upregulation of SLC7A11 and GPX4 expression. However, selective inhibition of PI3K/AKT and plasmid-based overexpression of p53 significantly abolished the anti-ferroptosis functions of Lico A. In conclusion, Lico A attenuates DIC by suppressing p53-mediated ferroptosis through activating PI3K/AKT/MDM2 signaling.</p>","PeriodicalId":18862,"journal":{"name":"Naunyn-schmiedebergs Archives of Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138574141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nisha Gulati, Dinesh Kumar Chellappan, Ronan MacLoughlin, Gaurav Gupta, Sachin Kumar Singh, Brian G. Oliver, Kamal Dua, Harish Dureja
{"title":"Advances in nano-based drug delivery systems for the management of cytokine influx-mediated inflammation in lung diseases","authors":"Nisha Gulati, Dinesh Kumar Chellappan, Ronan MacLoughlin, Gaurav Gupta, Sachin Kumar Singh, Brian G. Oliver, Kamal Dua, Harish Dureja","doi":"10.1007/s00210-023-02882-y","DOIUrl":"https://doi.org/10.1007/s00210-023-02882-y","url":null,"abstract":"<p>Asthma, lung cancer, cystic fibrosis, tuberculosis, acute respiratory distress syndrome, chronic obstructive pulmonary disease, and COVID-19 are few examples of inflammatory lung conditions that cause cytokine release syndrome. It can initiate a widespread inflammatory response and may activate several inflammatory pathways that cause multiple organ failures leading to increased number of deaths and increased prevalence rates around the world. Nanotechnology-based therapeutic modalities such as nanoparticles, liposomes, nanosuspension, monoclonal antibodies, and vaccines can be used in the effective treatment of inflammatory lung diseases at both cellular and molecular levels. This would also help significantly in the reduction of patient mortality. Therefore, nanotechnology could be a potent platform for repurposing current medications in the treatment of inflammatory lung diseases. The aim and approach of this article are to highlight the clinical manifestations of cytokine storm in inflammatory lung diseases along with the advances and potential applications of nanotechnology-based therapeutics in the management of cytokine storm. Further in-depth studies are required to understand the molecular pathophysiology, and how nanotechnology-based therapeutics can help to effectively combat this problem.</p>","PeriodicalId":18862,"journal":{"name":"Naunyn-schmiedebergs Archives of Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138573920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Giussani, T. Colleoni, R. Bassi, L. Brioschi, G. Tettamanti, K. Hanada, L. Riboni, P. Viani
{"title":"Metabolic and functional role of the ceramide binding protein CERT in glioma cells","authors":"P. Giussani, T. Colleoni, R. Bassi, L. Brioschi, G. Tettamanti, K. Hanada, L. Riboni, P. Viani","doi":"10.1007/S00210-006-0116-8","DOIUrl":"https://doi.org/10.1007/S00210-006-0116-8","url":null,"abstract":"","PeriodicalId":18862,"journal":{"name":"Naunyn-schmiedebergs Archives of Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76323382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Schroeder, C. Meyer-Burgdorff, D. Rott, O. Brahms
{"title":"[Comparative studies on the effect of ADH, hypertensin and renin on the renal excretion of water and electrolytes in the rat].","authors":"R. Schroeder, C. Meyer-Burgdorff, D. Rott, O. Brahms","doi":"10.1007/BF00247698","DOIUrl":"https://doi.org/10.1007/BF00247698","url":null,"abstract":"","PeriodicalId":18862,"journal":{"name":"Naunyn-schmiedebergs Archives of Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83972287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}