Tian Su, Ting Wang, Zhaochuan Zhang, Xiao Sun, Shangwei Gong, Xuefeng Mei, Zhenyu Tan, Shenao Cui
{"title":"Mechanical properties and frost resistance of recycled brick aggregate concrete modified by nano-SiO<sub>2</sub>","authors":"Tian Su, Ting Wang, Zhaochuan Zhang, Xiao Sun, Shangwei Gong, Xuefeng Mei, Zhenyu Tan, Shenao Cui","doi":"10.1515/ntrev-2023-0576","DOIUrl":"https://doi.org/10.1515/ntrev-2023-0576","url":null,"abstract":"Abstract In this work, brick aggregates were immersed in nano-SiO 2 solution for 2 days, and the effects of nano-SiO 2 on the brick aggregate properties, mechanical properties (compressive strength, flexural strength, and splitting tensile strength), frost resistance (apparent phenomenon, mass loss, relative dynamic modulus of elasticity, and compressive strength) of recycled brick aggregate concrete and the microstructure of recycled brick aggregate concrete were investigated. The results show that nano-SiO 2 can effectively improve the performance of recycled brick aggregate and the mechanical properties of recycled brick aggregate concrete, mainly by reducing the water absorption and crushing index and improving the compressive strength, flexural strength, and splitting tensile strength. With increasing nano-SiO 2 solution concentration, the compressive strength, flexural strength, and splitting tensile strength of recycled brick aggregate concrete first increase and then decrease. The frost resistance of recycled brick aggregate concrete is superior to that of ordinary aggregate concrete, while the frost resistance of nano-SiO 2 -modified recycled brick aggregate concrete is inferior to that of recycled brick aggregate concrete. In addition, the freeze‒thaw damage mechanism of recycled brick aggregate concrete is analyzed, and a freeze‒thaw damage life prediction model of nano-SiO 2 -modified recycled brick aggregate concrete based on the Weibull distribution is proposed.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135700903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in organic–inorganic nanocomposites for cancer imaging and therapy","authors":"Wenhui Xie, Yanli Liu, Juntang Lin","doi":"10.1515/ntrev-2023-0133","DOIUrl":"https://doi.org/10.1515/ntrev-2023-0133","url":null,"abstract":"Abstract “All in one” organic–inorganic nanocomposites with high biocompatibility and excellent physicochemical properties have recently attracted special attention in cancer imaging and therapy. Combination of organic and inorganic materials confers the nanocomposites with superior biocompatibility and biodegradability of organic materials, as well as magnetic, mechanical, and optical properties of inorganic materials. Increased endeavors have been made to produce diverse organic–inorganic nanocomposites and investigate their potential applications in cancer treatment. Thus, a systematic review of research progresses of diverse organic–inorganic nanocomposites in cancer imaging and therapy is indispensable. Following a brief overview of nanocomposites synthesis, classification, and functionalization, the current review is focused on comprehensively summarizing representatives of both organic–inorganic nanoscale nanocomposites (including organic-silica, organic-carbon, organic-quantum dots, organic-platinum family metals, organic-gold, organic metal oxides, and other nanocomposites) and organic–inorganic molecular nanocomposites (including metal-organic frameworks, organosilica nanoparticles, and amorphous metal coordination polymer particles), and further analyzing their working mechanism in cancer imaging and therapy. Finally, the challenges and future perspectives of organic–inorganic nanocomposites are addressed for promoting their developments and clinical application in cancer treatment.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":"190 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134883135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The progress of cathode materials in aqueous zinc-ion batteries","authors":"Xinchi Zhou, Shan Jiang, Siao Zhu, Shuangfei Xiang, Zhen Zhang, Xiangyu Xu, Yuanyuan Xu, Jian Zhou, Suchong Tan, Zhengdao Pan, Xingyou Rao, Yutong Wu, Zhoulu Wang, Xiang Liu, Yi Zhang, Yunlei Zhou","doi":"10.1515/ntrev-2023-0122","DOIUrl":"https://doi.org/10.1515/ntrev-2023-0122","url":null,"abstract":"Abstract Rechargeable aqueous zinc-ion batteries (AZIBs), a promising energy storage device in the large-scale energy storage market, have attracted extensive attention in recent years due to their high safety, low cost, environmental friendliness, and excellent electrochemical performance. Despite the rapid development of AZIBs technology, challenges such as insufficient energy density and limited cycling life still exist, which hinders the practical application of AZIBs. Due to the critical role that cathode materials play in the electrochemical performance of AZIBs, it is necessary to summarize the progress of cathode materials for AZIBs. In this review, the Zn 2+ storage mechanisms of the cathode materials are analyzed. Subsequently, the representative cathode materials are introduced, and their structures and electrochemical performances are compared. The existing problems and improvement strategies of these cathode materials are summarized in detail. Finally, the future challenges and promising prospects for cathode materials are proposed. This review will guide researchers and manufacturers, benefiting them in designing advanced AZIBs for grid-scale energy storage.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":"367 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136207649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Mohammed, R. Khan, VarshaM. Singh, Mohammad Yusuf, N. Akhtar, G. Sulaiman, S. Albukhaty, A. Abdellatif, Maria Khan, Salman A. A. Mohammed, A. Al-Subaiyel
{"title":"Solid lipid nanoparticles for targeted natural and synthetic drugs delivery in high-incidence cancers, and other diseases: Roles of preparation methods, lipid composition, transitional stability, and release profiles in nanocarriers’ development","authors":"H. Mohammed, R. Khan, VarshaM. Singh, Mohammad Yusuf, N. Akhtar, G. Sulaiman, S. Albukhaty, A. Abdellatif, Maria Khan, Salman A. A. Mohammed, A. Al-Subaiyel","doi":"10.1515/ntrev-2022-0517","DOIUrl":"https://doi.org/10.1515/ntrev-2022-0517","url":null,"abstract":"Abstract Solid lipid nanoparticles (SLNs), the spheroidal-shaped, colloids state lipophilic-natured, innovative nanoscale particulate materials, are being concurrently prepared by the quality-by-design approach for cellular and sub-cellular delivery of drugs and other payloads with facilitated physicochemical characteristics for targeted delivery. The delivery of drugs, other pharmaceuticals and biopharmaceutical materials, and genes to the diseased body organs, tissues, and cellular mass have been developed as promising nanocarriers for different high-incidence cancers and other disease therapies, including the Alzheimer’s, Parkinson’s, and tuberculosis. SLNs have evolved as favorable lipid-based formulation, and have served as oral and intravenous carriers that targeted the drug with stable and sterile transport, sustained delivery, controlled drug/payload deloading, and requisite biodistributions. SLNs advantages, shortcomings, and bottlenecks have been discussed with plausible remediation strategies. The laboratory-scale and bulk preparations, use of different lipids in various preparation, surface coatings, physicochemical properties of the final product, and characterization protocols are also encompassed, as are the routes of administrations, specific-sites-targeting, and on-site outreach with biocompatibility, bioavailability, and the absorption, distribution, metabolism, and excretion and pharmacokinetics, and pharmacodynamics inputs with relevance to the therapy. Plausible applications in complex and genetic disorders, and as personalized medicine, also of traditional and alternative medicine prospects, are also discussed. Graphical abstract","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":7.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42348204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. C. Lebepe, S. Parani, Rodney Maluleke, Vuyelwa Ncapayi, O. Aladesuyi, A. Komiya, T. Kodama, O. Oluwafemi
{"title":"NIR-II window absorbing graphene oxide-coated gold nanorods and graphene quantum dot-coupled gold nanorods for photothermal cancer therapy","authors":"T. C. Lebepe, S. Parani, Rodney Maluleke, Vuyelwa Ncapayi, O. Aladesuyi, A. Komiya, T. Kodama, O. Oluwafemi","doi":"10.1515/ntrev-2022-0541","DOIUrl":"https://doi.org/10.1515/ntrev-2022-0541","url":null,"abstract":"Abstract The graphene-based materials have been used as a potential coating material for nanoparticles due to their excellent passivation. Herein, we report for the first time the colloidal stability, photothermal profile, thermal stability, cytotoxicity, and photo-cytotoxicity of graphene quantum dots (GQDs) coupled with the second infrared window (NIR-II) absorbing gold nanorods (AuNRs/GQDs) and compare it to graphene oxide (GO)-coated NIR-II absorbing AuNRs (AuNRs/GO). The composites were achieved by electrostatic interaction of the GO or GQDs with AuNRs. The results revealed that (i) AuNRs/GQDs were more stable in the aqueous phosphate buffer and cell culture media than AuNRs/GO and AuNRs; (ii) GO enhanced the photothermal efficiency of the AuNRs, whereas GQDs reduced it; (iii) GQDs enhanced the photothermal stability of AuNRs than GO; (iv) both AuNRs/GO and AuNRs/GQDs were biocompatible with mouse colon carcinoma (C26) cell lines and malignant fibrous histiocytoma‐like, expressing a fusion of the luciferase and enhanced green fluorescent protein genes (KM-Luc/GFP) cell lines; and (v) photo-cytotoxicity of AuNRs/GO and AuNRs/GQDs conducted against C26 cell lines showed significantly improved cell death compared to laser irradiation alone; however, AuNRs/GO exhibited high photo-toxicity than AuNRs/GQDs. This study shows that AuNRs/GO and AuNRs/GQDs composites possess unique properties to improve AuNRs and be utilised in photothermal applications.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":7.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49172003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plant mediated-green synthesis of zinc oxide nanoparticles: An insight into biomedical applications","authors":"R. Hamed, Ruwa Z. Obeid, R. Abu-Huwaij","doi":"10.1515/ntrev-2023-0112","DOIUrl":"https://doi.org/10.1515/ntrev-2023-0112","url":null,"abstract":"Abstract Green synthesis of zinc oxide (ZnO) nanoparticles (NPs) using various plant extracts as reducing and capping agents has gained attention in recent research. The green synthesis of ZnO NPs offers several advantages such as being simple, eco-friendly, safe, cost-effective, and reproducible approach with high stability. Hence, this article provides an overview of zinc metal and ZnO compounds, and traditional chemical and physical synthesis of ZnO NPs with primary focuses on the green synthesis of ZnO NPs. This study discusses various plant extracts used and the proposed mechanisms in the green synthesis of ZnO NPs. Additionally, it explores the cytotoxic mechanisms of the green-synthesized ZnO NPs and addresses the various biomedical applications of ZnO NPs, including antibacterial, anticancer, antidiabetic, antioxidant, antifungal, antiviral, antiparasitic, anti-inflammatory, and wound healing. Moreover, the review critically discusses the toxicity of ZnO NPs and emphasizes the need for more toxicological studies to ensure the safety and facilitate the risk assessments and risk management of ZnO NPs. Furthermore, this review underlines the challenges associated with the translation process of ZnO NPs from bench to market, including the complex and time-consuming regulatory approval process for ZnO NPs, which requires a multidisciplinary approach involving scientists, regulators, and manufacturers.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":7.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49179384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Khakbiz, Sara Shakibania, L. Ghazanfari, Shan Zhao, M. Tavakoli, Zi Chen
{"title":"Engineered nanoflowers, nanotrees, nanostars, nanodendrites, and nanoleaves for biomedical applications","authors":"M. Khakbiz, Sara Shakibania, L. Ghazanfari, Shan Zhao, M. Tavakoli, Zi Chen","doi":"10.1515/ntrev-2022-0523","DOIUrl":"https://doi.org/10.1515/ntrev-2022-0523","url":null,"abstract":"Abstract The development of architectured nanomaterials has been booming in recent years in part due to their expanded applications in the biomedical field, such as biosensing, bioimaging, drug delivery, and cancer therapeutics. Nanomaterials exhibit a wide variety of shapes depending on both the intrinsic properties of the materials and the synthesis procedures. Typically, the large surface areas of nanomaterials improve the rate of mass transfer in biological reactions. They also have high self-ordering and assembly behaviors, which make them great candidates for various biomedical applications. Some nanomaterials have a high conversion rate in transforming the energy of photons into heat or fluorescence, thus showing promise in cancer treatment (such as hyperthermia) and bioimaging. The nanometric dimension makes them suitable for passing through the biological barriers or interacting with the natural molecules (such as DNA, protein). Nanoflowers, nanotrees, nanostars, and nanodendrites are examples of nano-sized structures, which exhibit unique geometry-dependent properties. Here we reviewed the fabrication methods, features, properties, and biomedical applications of four nano-structured materials including nanoflowers, nanotrees, nanostars, nanodendrites, and nanoleaves. We further provided our perspectives on employing these novel nanostructures as advanced functional materials for a broad spectrum of applications. Graphical abstract","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":7.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45302594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ke Chen, Xudong Yang, Rui Hao, Minghui Shao, Xiaoyong Yang, Xiuze Li, Yuxuan Li, Juzhe Liu, Sai Zhang
{"title":"Optimized Cu2O-{100} facet for generation of different reactive oxidative species via peroxymonosulfate activation at specific pH values to efficient acetaminophen removal","authors":"Ke Chen, Xudong Yang, Rui Hao, Minghui Shao, Xiaoyong Yang, Xiuze Li, Yuxuan Li, Juzhe Liu, Sai Zhang","doi":"10.1515/ntrev-2022-0542","DOIUrl":"https://doi.org/10.1515/ntrev-2022-0542","url":null,"abstract":"Abstract Activation of peroxymonosulfate (PMS) to degrade persistent organic contaminants has received increasing attention in wastewater purification. In this study, Cu2O catalysts with different exposed crystal facets were prepared, characterized, and evaluated for acetaminophen (ACE) degradation through PMS activation. The experimental results showed that cubic Cu2O with {100} facets exhibited remarkable activity on ACE removal by PMS activation in wide pH range of 3–11. DFT calculations indicated that Cu2O-{100} displayed higher electron transfer efficiency and PMS adsorption ability, further improving PMS activation. The radicals quenching experiments and electron paramagnetic resonance (EPR) results illustrated that singlet oxygen (1O2) was dominant reactive oxidative species (ROSs) during oxidation reactions and the relevant generation pathways were distinctly elucidated. Finally, the possible PMS activation mechanisms were discussed for ACE degradation in a wide pH range. This study will provide new insights to disclose PMS-based advanced oxidation processes (AOPs), and offer a new approach for wastewater purification by non-radical reactions.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":7.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46927821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nur Aliaa Zulkefli, R. Mustapha, S. Jusoh, Che Mohd Ruzaidi Ghazali, M. Awang, M. Norrrahim, R. A. Ilyas
{"title":"Hybrid nanofiller reinforcement in thermoset and biothermoset applications: A review","authors":"Nur Aliaa Zulkefli, R. Mustapha, S. Jusoh, Che Mohd Ruzaidi Ghazali, M. Awang, M. Norrrahim, R. A. Ilyas","doi":"10.1515/ntrev-2022-0499","DOIUrl":"https://doi.org/10.1515/ntrev-2022-0499","url":null,"abstract":"Abstract Thermoset and biothermoset applications have been advancing tremendously in recent years due to their easy processing, versatility, and exceptional mechanical and thermal properties. Biothermoset is a type of thermoset that is produced using biological resources, either in portions by blending with the conventional resin, or completely. Various research has been employed to accommodate their high and rapidly growing demands and broaden their functions and implementation in numerous fields. One of these attempts is the reinforcement of nanofillers. Nanofillers such as nanoclay, graphene nanoplatelets, carbon nanotubes, nanodiamond, etc., possess diverse and outstanding properties and are also easily accessible. Recently, there has been a developing trend of hybridizing two or more types of nanofillers as a hybrid reinforcement system to address the limitations of single-filler reinforcement systems and to establish better-supporting properties of the nanocomposites. In this review, we discussed the use of hybrid nanofillers in different thermoset and biothermoset applications. Emphasis is given to the types of hybrids, their interactions with each other and the host polymer, and the effects of their contents and ratios. Limitations from the previous works are also discussed and the future undertaking of research on hybrid nanofillers is also proposed.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":7.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44552512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. A. Alawi, H. Kamar, M. Falah, O. A. Hussein, A. Abdelrazek, Waqar Ahmed, Mahmoud Eltaweel, R. Homod, N. Al-Ansari, ZaherMundher Yaseen
{"title":"Thermohydraulic performance of thermal system integrated with twisted turbulator inserts using ternary hybrid nanofluids","authors":"O. A. Alawi, H. Kamar, M. Falah, O. A. Hussein, A. Abdelrazek, Waqar Ahmed, Mahmoud Eltaweel, R. Homod, N. Al-Ansari, ZaherMundher Yaseen","doi":"10.1515/ntrev-2022-0504","DOIUrl":"https://doi.org/10.1515/ntrev-2022-0504","url":null,"abstract":"Abstract Mono, hybrid, and ternary nanofluids were tested inside the plain and twisted-tape pipes using k-omega shear stress transport turbulence models. The Reynolds number was 5,000 ≤ Re ≤ 15,000, and thermophysical properties were calculated under the condition of 303 K. Single nanofluids (Al2O3/distilled water [DW], SiO2/DW, and ZnO/DW), hybrid nanofluids (SiO2 + Al2O3/DW, SiO2 + ZnO/DW, and ZnO + Al2O3/DW) in the mixture ratio of 80:20, and ternary nanofluids (SiO2 + Al2O3 + ZnO/DW) in the mixture ratio of 60:20:20 were estimated in different volumetric concentrations (1, 2, 3, and 4%). The twisted pipe had a higher outlet temperature than the plain pipe, while SiO2/DW had a lower T out value with 310.933 K (plain pipe) and 313.842 K (twisted pipe) at Re = 9,000. The thermal system gained better energy using ZnO/DW with 6178.060 W (plain pipe) and 8426.474 W (twisted pipe). Furthermore, using SiO2/DW at Re = 9,000, heat transfer improved by 18.017% (plain pipe) and 21.007% (twisted pipe). At Re = 900, the pressure in plain and twisted pipes employing SiO2/DW reduced by 167.114 and 166.994%, respectively. In general, the thermohydraulic performance of DW and nanofluids was superior to one. Meanwhile, with Re = 15,000, DW had a higher value of η Thermohydraulic = 1.678.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":7.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43004568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}