NIR-II window absorbing graphene oxide-coated gold nanorods and graphene quantum dot-coupled gold nanorods for photothermal cancer therapy

IF 6.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
T. C. Lebepe, S. Parani, Rodney Maluleke, Vuyelwa Ncapayi, O. Aladesuyi, A. Komiya, T. Kodama, O. Oluwafemi
{"title":"NIR-II window absorbing graphene oxide-coated gold nanorods and graphene quantum dot-coupled gold nanorods for photothermal cancer therapy","authors":"T. C. Lebepe, S. Parani, Rodney Maluleke, Vuyelwa Ncapayi, O. Aladesuyi, A. Komiya, T. Kodama, O. Oluwafemi","doi":"10.1515/ntrev-2022-0541","DOIUrl":null,"url":null,"abstract":"Abstract The graphene-based materials have been used as a potential coating material for nanoparticles due to their excellent passivation. Herein, we report for the first time the colloidal stability, photothermal profile, thermal stability, cytotoxicity, and photo-cytotoxicity of graphene quantum dots (GQDs) coupled with the second infrared window (NIR-II) absorbing gold nanorods (AuNRs/GQDs) and compare it to graphene oxide (GO)-coated NIR-II absorbing AuNRs (AuNRs/GO). The composites were achieved by electrostatic interaction of the GO or GQDs with AuNRs. The results revealed that (i) AuNRs/GQDs were more stable in the aqueous phosphate buffer and cell culture media than AuNRs/GO and AuNRs; (ii) GO enhanced the photothermal efficiency of the AuNRs, whereas GQDs reduced it; (iii) GQDs enhanced the photothermal stability of AuNRs than GO; (iv) both AuNRs/GO and AuNRs/GQDs were biocompatible with mouse colon carcinoma (C26) cell lines and malignant fibrous histiocytoma‐like, expressing a fusion of the luciferase and enhanced green fluorescent protein genes (KM-Luc/GFP) cell lines; and (v) photo-cytotoxicity of AuNRs/GO and AuNRs/GQDs conducted against C26 cell lines showed significantly improved cell death compared to laser irradiation alone; however, AuNRs/GO exhibited high photo-toxicity than AuNRs/GQDs. This study shows that AuNRs/GO and AuNRs/GQDs composites possess unique properties to improve AuNRs and be utilised in photothermal applications.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/ntrev-2022-0541","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The graphene-based materials have been used as a potential coating material for nanoparticles due to their excellent passivation. Herein, we report for the first time the colloidal stability, photothermal profile, thermal stability, cytotoxicity, and photo-cytotoxicity of graphene quantum dots (GQDs) coupled with the second infrared window (NIR-II) absorbing gold nanorods (AuNRs/GQDs) and compare it to graphene oxide (GO)-coated NIR-II absorbing AuNRs (AuNRs/GO). The composites were achieved by electrostatic interaction of the GO or GQDs with AuNRs. The results revealed that (i) AuNRs/GQDs were more stable in the aqueous phosphate buffer and cell culture media than AuNRs/GO and AuNRs; (ii) GO enhanced the photothermal efficiency of the AuNRs, whereas GQDs reduced it; (iii) GQDs enhanced the photothermal stability of AuNRs than GO; (iv) both AuNRs/GO and AuNRs/GQDs were biocompatible with mouse colon carcinoma (C26) cell lines and malignant fibrous histiocytoma‐like, expressing a fusion of the luciferase and enhanced green fluorescent protein genes (KM-Luc/GFP) cell lines; and (v) photo-cytotoxicity of AuNRs/GO and AuNRs/GQDs conducted against C26 cell lines showed significantly improved cell death compared to laser irradiation alone; however, AuNRs/GO exhibited high photo-toxicity than AuNRs/GQDs. This study shows that AuNRs/GO and AuNRs/GQDs composites possess unique properties to improve AuNRs and be utilised in photothermal applications.
用于癌症光热治疗的NIR-II窗口吸收石墨烯氧化涂层金纳米棒和石墨烯量子点耦合金纳米杆
摘要石墨烯基材料由于其优异的钝化性能,已被用作纳米颗粒的潜在涂层材料。在此,我们首次报道了与第二红外窗口(NIR-II)吸收金纳米棒(AuNRs/GQDs)耦合的石墨烯量子点(GQDs。复合材料是通过GO或GQDs与AuNRs的静电相互作用实现的。结果表明:(i)AuNRs/GQDs在磷酸盐缓冲液和细胞培养基中比AuNRs/GO和AuNRs更稳定;(ii)GO增强了AuNRs的光热效率,而GQDs降低了它;(iii)GQDs比GO增强了AuNRs的光热稳定性;(iv)AuNRs/GO和AuNRs/GQDs均与小鼠结肠癌(C26)细胞系和恶性纤维组织细胞瘤样细胞系具有生物相容性,表达荧光素酶和增强型绿色荧光蛋白基因(KM-Luc/GFP)细胞系的融合;和(v)与单独的激光照射相比,对C26细胞系进行的AuNRs/GO和AuNRs/GQDs的光细胞毒性显示出显著改善的细胞死亡;AuNRs/GO表现出比AuNRs/GQDs高的光毒性。本研究表明,AuNRs/GO和AuNRs/GQDs复合材料具有改善AuNRs的独特性能,可用于光热应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology Reviews
Nanotechnology Reviews CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
11.40
自引率
13.50%
发文量
137
审稿时长
7 weeks
期刊介绍: The bimonthly journal Nanotechnology Reviews provides a platform for scientists and engineers of all involved disciplines to exchange important recent research on fundamental as well as applied aspects. While expert reviews provide a state of the art assessment on a specific topic, research highlight contributions present most recent and novel findings. In addition to technical contributions, Nanotechnology Reviews publishes articles on implications of nanotechnology for society, environment, education, intellectual property, industry, and politics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信