Molecular Medicine最新文献

筛选
英文 中文
Hyperoside induces ferroptosis in chronic myeloid leukemia cells by targeting NRF2. 金丝桃苷通过靶向 NRF2 诱导慢性髓性白血病细胞的铁变态反应
IF 6 2区 医学
Molecular Medicine Pub Date : 2024-11-21 DOI: 10.1186/s10020-024-01002-7
Junyi Wei, Quanyou Chai, Yuqiao Qin, Long Li, Chunling Guo, Zhaoyang Lu, Huimin Liu
{"title":"Hyperoside induces ferroptosis in chronic myeloid leukemia cells by targeting NRF2.","authors":"Junyi Wei, Quanyou Chai, Yuqiao Qin, Long Li, Chunling Guo, Zhaoyang Lu, Huimin Liu","doi":"10.1186/s10020-024-01002-7","DOIUrl":"10.1186/s10020-024-01002-7","url":null,"abstract":"<p><strong>Background: </strong>Hyperoside (quercetin-3-O-β-D-galactopyranoside) is a flavonol glycoside compound derived from plants in the Hypericum and Crataegus genera that reportedly exhibits an array of anti-inflammatory, antioxidant, and antitumor properties such that it has been used to treat various diseases. Whether it can serve as an effective treatment for chronic myeloid leukemia (CML) cells, however, has yet to be established. The present study was thus devised to assess the therapeutic effects of hyperoside on CML cells and to clarify the underlying mechanism of action.</p><p><strong>Methods: </strong>Cellular viability, proliferative activity, migration, and apoptotic death were respectively analyzed through CCK-8, EDU, transwell, and flow cytometry assays. RNA-seq and bioinformatics approaches were further employed to evaluate the mechanisms through which hyperoside influences CML cells, while analyses of reactive oxygen species (ROS) and free iron were detected with commercial kits. Transmission electron microscopy was used to assess mitochondrial morphology. Molecular docking, cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) approaches were also used to explore the ability of hyperoside to target NRF2.</p><p><strong>Results: </strong>From a mechanistic perspective, hyperoside was able to inhibit SLC7A11/GPX4 signaling in a manner that was abrogated by the ferroptosis inhibitor ferrostatin-1. NRF2 was also closely associated with the inactivation of the SLC7A11/GPX4 axis mediated by hyperoside such that overexpressing NRF2 ablated the benefits associated with hyperoside treatment.</p><p><strong>Conclusions: </strong>The present analyses indicate that hyperoside can target the NRF2/SLC7A11/GPX4 axis to induce ferroptotic CML cell death.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"224"},"PeriodicalIF":6.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elabela alleviates cuproptosis and vascular calcification in vitaminD3- overloaded mice via regulation of the PPAR-γ /FDX1 signaling. 艾拉贝拉通过调节 PPAR-γ /FDX1 信号传导,缓解维生素 D3 超载小鼠的杯突症和血管钙化。
IF 6 2区 医学
Molecular Medicine Pub Date : 2024-11-20 DOI: 10.1186/s10020-024-00997-3
Rui-Qiang Qi, Yu-Fei Chen, Jing Cheng, Jia-Wei Song, Yi-Hang Chen, Si-Yuan Wang, Ying Liu, Kai-Xin Yan, Xiao-Yan Liu, Jing Li, Jiu-Chang Zhong
{"title":"Elabela alleviates cuproptosis and vascular calcification in vitaminD3- overloaded mice via regulation of the PPAR-γ /FDX1 signaling.","authors":"Rui-Qiang Qi, Yu-Fei Chen, Jing Cheng, Jia-Wei Song, Yi-Hang Chen, Si-Yuan Wang, Ying Liu, Kai-Xin Yan, Xiao-Yan Liu, Jing Li, Jiu-Chang Zhong","doi":"10.1186/s10020-024-00997-3","DOIUrl":"10.1186/s10020-024-00997-3","url":null,"abstract":"<p><strong>Background: </strong>Vascular calcification is a crucial pathophysiological process associated with age-related cardiovascular diseases. Elabela, a recently identified peptide, has emerged as a significant player in the regulation of cardiovascular function and homeostasis. However, the effects and underlying mechanisms of Elabela on age-related vascular calcification remain largely unexplored.</p><p><strong>Methods: </strong>In-vivo vascular calcifications of C57BL/6J mice (8-week-old) and young (8-week-old) or aged (72-week-old) SD rats were injected with vitamin D3 (VitD3) or saline, respectively. Furthermore, the VitD3-overloaded mice received Elabela (1 mg/kg/d), peroxisome proliferators-activated receptor-γ (PPAR-γ) activator Rosiglitazone (5 mg/kg/d) or copper-ionophore Elesclomol (20 mg/kg/d), respectively. As for in-vitro studies, primary rat vascular smooth muscle cells (VSMCs) were isolated from aortas and cultured for explore the role and underlying mechanism of Elabela in vascular calcification.</p><p><strong>Results: </strong>There were marked increases in FDX1 and Slc31a1 levels in both aortas and VSMCs during vascular calcification, coinciding with a rise in copper levels and a decrease in Elabela levels. Alizarin red and von-Kossa staining indicated that the administration of Elabela effectively hindered the progression of vascular cuproptosis and arterial calcification in VitD3-overloaded mice and rat arterial rings models. Moreover, Elabela significantly suppressed osteogenic differentiation and calcium deposition in VSMCs and strikingly reversed high phosphate-induced augmentation of FDX1 expression, DLAT aggregation as well as intracellular copper ion levels. More importantly, Elabela exhibited remarkable abilities to prevent mitochondrial dysfunctions in primary rat VSMCs by maintaining mitochondrial membrane potential, inhibiting mitochondrial division, reducing mitochondrial ROS production and increasing ATP levels. Interestingly, Elabela mitigated cellular senescence and production of pro-inflammatory cytokines including IL-1α, IL-1β, IL-6, IL-18 and TNF-α, respectively. Furthermore, Elabela upregulated the protein levels of PPAR-γ in VitD3-overloaded mice. Administrating PPAR-γ inhibitor GW9662 or blocking the efflux of intracellular copper abolished the protective effect of Elabela on vascular calcification by enhancing levels of FDX1, Slc31a1, Runx2, and BMP2.</p><p><strong>Conclusion: </strong>Elabela plays a crucial role in protecting against vascular cuproptosis and arterial calcification by activating the PPAR-γ /FDX1 signaling. Elabela supplementation and cuproptosis suppression serve as effective therapeutic approaches for managing vascular calcification and related cardiovascular disorders.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"223"},"PeriodicalIF":6.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577739/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FUT8 upregulates CD36 and its core fucosylation to accelerate pericyte-myofibroblast transition through the mitochondrial-dependent apoptosis pathway during AKI-CKD. 在 AKI-CKD 期间,FUT8 上调 CD36 及其核心岩藻糖基化,通过线粒体依赖性凋亡途径加速周细胞-肌成纤维细胞转化。
IF 6 2区 医学
Molecular Medicine Pub Date : 2024-11-20 DOI: 10.1186/s10020-024-00994-6
Yaxi Shang, Ziran Wang, Fan Yang, Weidong Wang, Qingzhu Tang, Xianan Guo, Xiangning Du, Xu Zhang, Jiaojiao Hao, Hongli Lin
{"title":"FUT8 upregulates CD36 and its core fucosylation to accelerate pericyte-myofibroblast transition through the mitochondrial-dependent apoptosis pathway during AKI-CKD.","authors":"Yaxi Shang, Ziran Wang, Fan Yang, Weidong Wang, Qingzhu Tang, Xianan Guo, Xiangning Du, Xu Zhang, Jiaojiao Hao, Hongli Lin","doi":"10.1186/s10020-024-00994-6","DOIUrl":"10.1186/s10020-024-00994-6","url":null,"abstract":"<p><strong>Background: </strong>Activation of pericytes leads to renal interstitial fibrosis, but the regulatory mechanism of pericytes in the progression from AKI to CKD remains poorly understood. CD36 activation plays a role in the progression of CKD. However, the significance of CD36 during AKI-CKD, especially in pericyte, remains to be fully defined.</p><p><strong>Methods: </strong>GEO and DISCO database were used to analyze the expression of CD36 in pericyte during AKI-CKD; IRI to conduct AKI-CKD mouse model; Hypoxia/Reoxygenation (H/R) to induce the cell model; RT-qPCR and Western blotting to detect gene expression; IP and confocal-IF to determine the core fucosylation (CF) level of CD36. Flow cytometry (AV/PI staining) to detect the cell apoptosis and JC-1 staining to react to the change of mitochondrial membrane potential.</p><p><strong>Results: </strong>During AKI to CKD progression, CD36 expression in pericytes is higher and may be influenced by CF. Moreover, we confirmed the positive association of CD36 expression with pericyte-myofibroblast transition and the progression of AKI-CKD in an IRI mouse model and hypoxia/reoxygenation (H/R) pericytes. Notably, we discovered that FUT8 upregulates both CD36 expression and its CF level, contributing to the activation of the mitochondrial-dependent apoptosis signaling pathway in pericytes, ultimately leading to the progression of AKI-CKD.</p><p><strong>Conclusion: </strong>These results further identify FUT8 and CD36 as potential targets for the treatment in the progression of AKI-CKD.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"222"},"PeriodicalIF":6.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577590/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Post-sepsis chronic muscle weakness can be prevented by pharmacological protection of mitochondria. 通过对线粒体进行药物保护,可以预防败血症后慢性肌无力。
IF 6 2区 医学
Molecular Medicine Pub Date : 2024-11-19 DOI: 10.1186/s10020-024-00982-w
Meagan S Kingren, Alexander R Keeble, Alyson M Galvan-Lara, Jodi M Ogle, Zoltán Ungvári, Daret K St Clair, Timothy A Butterfield, Allison M Owen, Christopher S Fry, Samir P Patel, Hiroshi Saito
{"title":"Post-sepsis chronic muscle weakness can be prevented by pharmacological protection of mitochondria.","authors":"Meagan S Kingren, Alexander R Keeble, Alyson M Galvan-Lara, Jodi M Ogle, Zoltán Ungvári, Daret K St Clair, Timothy A Butterfield, Allison M Owen, Christopher S Fry, Samir P Patel, Hiroshi Saito","doi":"10.1186/s10020-024-00982-w","DOIUrl":"10.1186/s10020-024-00982-w","url":null,"abstract":"<p><strong>Background: </strong>Sepsis, mainly caused by bacterial infections, is the leading cause of in-patient hospitalizations. After discharge, most sepsis survivors suffer from long-term medical complications, particularly chronic skeletal muscle weakness. To investigate this medical condition in detail, we previously developed a murine severe sepsis-survival model that exhibits long-term post-sepsis skeletal muscle weakness. While mitochondrial abnormalities were present in the skeletal muscle of the sepsis surviving mice, the relationship between abnormal mitochondria and muscle weakness remained unclear. Herein, we aimed to investigate whether mitochondrial abnormalities have a causal role in chronic post-sepsis muscle weakness and could thereby serve as a therapeutic target.</p><p><strong>Methods: </strong>Experimental polymicrobial abdominal sepsis was induced in 16-18 months old male and female mice using cecal slurry injection with subsequent antibiotic and fluid resuscitation. To evaluate the pathological roles of mitochondrial abnormalities in post-sepsis skeletal muscle weakness, we utilized a transgenic mouse strain overexpressing the mitochondria-specific antioxidant enzyme manganese superoxide dismutase (MnSOD). Following sepsis development in C57BL/6 mice, we evaluated the effect of the mitochondria-targeting synthetic tetrapeptide SS-31 in protecting mitochondria from sepsis-induced damage and preventing skeletal muscle weakness development. In vivo and in vitro techniques were leveraged to assess muscle function at multiple timepoints throughout sepsis development and resolution. Histological and biochemical analyses including bulk mRNA sequencing were used to detect molecular changes in the muscle during and after sepsis RESULTS: Our time course study revealed that post sepsis skeletal muscle weakness develops progressively after the resolution of acute sepsis and in parallel with the accumulation of mitochondrial abnormalities and changes in the mitochondria-related gene expression profile. Transgenic mice overexpressing MnSOD were protected from mitochondrial abnormalities and muscle weakness following sepsis. Further, pharmacological protection of mitochondria utilizing SS-31 during sepsis effectively prevented the later development of muscle weakness.</p><p><strong>Conclusions: </strong>Our study revealed that the accumulation of mitochondrial abnormalities is the major cause of post-sepsis skeletal muscle weakness. Pharmacological protection of mitochondria during acute sepsis is a potential clinical treatment strategy to prevent post-sepsis muscle weakness.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"221"},"PeriodicalIF":6.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577827/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BMSC-derived exosomes promote osteoporosis alleviation via M2 macrophage polarization. BMSC衍生的外泌体通过M2巨噬细胞极化促进骨质疏松症的缓解
IF 6 2区 医学
Molecular Medicine Pub Date : 2024-11-19 DOI: 10.1186/s10020-024-00904-w
Yanbin Zhang, Jing Bai, Bin Xiao, Chunyan Li
{"title":"BMSC-derived exosomes promote osteoporosis alleviation via M2 macrophage polarization.","authors":"Yanbin Zhang, Jing Bai, Bin Xiao, Chunyan Li","doi":"10.1186/s10020-024-00904-w","DOIUrl":"10.1186/s10020-024-00904-w","url":null,"abstract":"<p><p>Osteoporosis is characterized by reduced bone mass due to imbalanced bone metabolism. Exosomes derived from bone mesenchymal stem cells (BMSCs) have been shown to play roles in various diseases. This study aimed to clarify the regulatory function and molecular mechanism of BMSCs-derived exosomes in osteogenic differentiation and their potential therapeutic effects on osteoporosis. Exosomes were extracted from BMSCs. Bone marrow-derived macrophages (BMDMs) were cultured and internalized with BMSCs-derived exosomes. Real-time quantitative PCR was used to detect the expression of macrophage surface markers and tripartite motif (TRIM) family genes. BMDMs were co-cultured with human osteoblasts to assess osteogenic differentiation. Western blot was performed to analyze the ubiquitination of triggering receptor expressed on myeloid cell 1 (TREM1) mediated by TRIM25. An ovariectomized mice model was established to evaluate the role of TRIM25 and exosomes in osteoporosis. Exosomes were successfully isolated from BMSCs. BMSCs-derived exosomes upregulated TRIM25 expression, promoting M2 macrophage polarization and osteogenic differentiation. TRIM25 facilitated the ubiquitination and degradation of TREM1. Overexpression of TREM1 reversed the enhanced M2 macrophage polarization and osteogenic differentiation caused by TRIM25 overexpression. TRIM25 enhanced the protective effect of BMSCs-derived exosomes against bone loss in mice. These findings suggested that BMSCs-derived exosomes promoted osteogenic differentiation by regulating M2 macrophage polarization through TRIM25-mediated ubiquitination and degradation of TREM1. This mechanism might provide a novel approach for treating osteoporosis.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"220"},"PeriodicalIF":6.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577737/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CKS2 induces autophagy-mediated glutathione metabolic reprogramming to facilitate ferroptosis resistance in colon cancer. CKS2 可诱导自噬介导的谷胱甘肽代谢重编程,从而促进结肠癌的铁变态反应抵抗。
IF 6 2区 医学
Molecular Medicine Pub Date : 2024-11-15 DOI: 10.1186/s10020-024-00979-5
Leilei Yang, Chengfeng Fang, Jiaju Han, Yufeng Ren, Zaiping Yang, Lingyan Shen, Dinghai Luo, Ruili Zhang, Yan Chen, Shenkang Zhou
{"title":"CKS2 induces autophagy-mediated glutathione metabolic reprogramming to facilitate ferroptosis resistance in colon cancer.","authors":"Leilei Yang, Chengfeng Fang, Jiaju Han, Yufeng Ren, Zaiping Yang, Lingyan Shen, Dinghai Luo, Ruili Zhang, Yan Chen, Shenkang Zhou","doi":"10.1186/s10020-024-00979-5","DOIUrl":"10.1186/s10020-024-00979-5","url":null,"abstract":"<p><strong>Background: </strong>Ferroptosis, a form of cell death characterized by lipid peroxidation, plays a crucial role in tumor suppression, offering novel avenues for cancer therapy. Previous studies have indicated that high levels of cyclin-dependent kinase subunit 2 (CKS2) promote the progression of various cancers. However, the potential interplay between CKS2 and ferroptosis in colon cancer (CC) remains unclear.</p><p><strong>Methods: </strong>Bioinformatics and RNA-seq analyses were employed to study genes associated with the ferroptosis signaling pathway. CKS2 expression was evaluated using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot (WB). The in vitro and in vivo effects of CKS2 on CC cells were assessed through the CCK-8 assay, colony formation assay, propidium iodide (PI) staining, BODIPY staining, DCFH-DA staining, and animal experiments. Additionally, the impact of CKS2 on autophagy and glutathione (GSH) metabolism was investigated using a transmission electron microscope (TEM), immunofluorescence (IF) assays, WB experiments, and relevant assay kits.</p><p><strong>Results: </strong>CKS2 expression was elevated in CC, indicating a poor clinical outcome. Knockdown of CKS2 significantly enhanced Erastin-induced ferroptosis in CC cells, leading to reduced GSH metabolism. Conversely, CKS2 overexpression produced opposite effects. Mechanistically, CKS2-induced autophagy reinforced GSH metabolism, thereby increasing resistance to ferroptosis in CC cells. Furthermore, inhibiting CKS2 promoted tumor ferroptosis by downregulating GPX4 expression. Additionally, CKS2 knockdown effectively increased sorafenib-induced ferroptosis both in vitro and in vivo.</p><p><strong>Conclusion: </strong>CKS2 suppresses ferroptosis in CC by modulating GSH metabolism in both in vitro and in vivo settings. These findings offer new insights into targeting CKS2 for CC treatment and shed light on the mechanism of ferroptosis in CC.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"219"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tetrandrine induces muscle atrophy involving ROS-mediated inhibition of Akt and FoxO3. 四氢化可的松通过 ROS 介导的 Akt 和 FoxO3 抑制作用诱导肌肉萎缩。
IF 6 2区 医学
Molecular Medicine Pub Date : 2024-11-15 DOI: 10.1186/s10020-024-00981-x
Xin-Qi Shan, Na Zhou, Chuang-Xin Pei, Xue Lu, Cai-Ping Chen, Hua-Qun Chen
{"title":"Tetrandrine induces muscle atrophy involving ROS-mediated inhibition of Akt and FoxO3.","authors":"Xin-Qi Shan, Na Zhou, Chuang-Xin Pei, Xue Lu, Cai-Ping Chen, Hua-Qun Chen","doi":"10.1186/s10020-024-00981-x","DOIUrl":"10.1186/s10020-024-00981-x","url":null,"abstract":"<p><p>Tetrandrine (Tet), a well-known drug of calcium channel blocker, has been broadly applied for anti-inflammatory and anti-fibrogenetic therapy. However, due to the functional diversity of ubiquitous calcium channels, potential side-effects may be expected. Our previous report revealed an inhibitory effect of Tet on myogenesis of skeletal muscle. Here, we found that Tet induced protein degradation resulting in the myofibril atrophy. Upon administration with a relative high dose (40 mg/kg) of Tet for 28 days, the mice displayed significantly reduced muscle mass, strength force, and myosin heavy chain (MyHC) protein levels. The MyHC reduction was further detected in C2C12 myotubes after treating with Tet. Interestingly, the expression of Atrogin-1 and Murf-1, the skeletal muscle specific E3 ligases of protein ubiquitin-proteasome system (UPS), was accordingly up-regulated, and the reduced MyHC was significantly mitigated by MG132, a 26S proteasome inhibitor, indicating a key role of UPS in the protein degradation of muscle cells. Further study showed that Tet induced autophagy also participated in the protein degradation. Mechanistically, Tet treatment caused ROS production in myotubes that in turn targeted on FoxO3/AKT signaling, resulting in the activation of UPS and autophagy processes that were involved in the protein degradation. Our study reveals a potential side-effect of Tet on skeletal muscle atrophy, particularly when the drug dose is relatively high.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"218"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566300/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142639346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-driven discovery of novel therapeutic targets in diabetic foot ulcers. 机器学习驱动发现糖尿病足溃疡的新型治疗靶点。
IF 6 2区 医学
Molecular Medicine Pub Date : 2024-11-14 DOI: 10.1186/s10020-024-00955-z
Xin Yu, Zhuo Wu, Nan Zhang
{"title":"Machine learning-driven discovery of novel therapeutic targets in diabetic foot ulcers.","authors":"Xin Yu, Zhuo Wu, Nan Zhang","doi":"10.1186/s10020-024-00955-z","DOIUrl":"10.1186/s10020-024-00955-z","url":null,"abstract":"<p><strong>Background: </strong>To utilize machine learning for identifying treatment response genes in diabetic foot ulcers (DFU).</p><p><strong>Methods: </strong>Transcriptome data from patients with DFU were collected and subjected to comprehensive analysis. Initially, differential expression analysis was conducted to identify genes with significant changes in expression levels between DFU patients and healthy controls. Following this, enrichment analyses were performed to uncover biological pathways and processes associated with these differentially expressed genes. Machine learning algorithms, including feature selection and classification techniques, were then applied to the data to pinpoint key genes that play crucial roles in the pathogenesis of DFU. An independent transcriptome dataset was used to validate the key genes identified in our study. Further analysis of single-cell datasets was conducted to investigate changes in key genes at the single-cell level.</p><p><strong>Results: </strong>Through this integrated approach, SCUBE1 and RNF103-CHMP3 were identified as key genes significantly associated with DFU. SCUBE1 was found to be involved in immune regulation, playing a role in the body's response to inflammation and infection, which are common in DFU. RNF103-CHMP3 was linked to extracellular interactions, suggesting its involvement in cellular communication and tissue repair mechanisms essential for wound healing. The reliability of our analysis results was confirmed in the independent transcriptome dataset. Additionally, the expression of SCUBE1 and RNF103-CHMP3 was examined in single-cell transcriptome data, showing that these genes were significantly downregulated in the cured DFU patient group, particularly in NK cells and macrophages.</p><p><strong>Conclusion: </strong>The identification of SCUBE1 and RNF103-CHMP3 as potential biomarkers for DFU marks a significant step forward in understanding the molecular basis of the disease. These genes offer new directions for both diagnosis and treatment, with the potential for developing targeted therapies that could enhance patient outcomes. This study underscores the value of integrating computational methods with biological data to uncover novel insights into complex diseases like DFU. Future research should focus on validating these findings in larger cohorts and exploring the therapeutic potential of targeting SCUBE1 and RNF103-CHMP3 in clinical settings.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"215"},"PeriodicalIF":6.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probiotic bacteria-released extracellular vesicles enhance macrophage phagocytosis in polymicrobial sepsis by activating the FPR1/2 pathway. 益生菌释放的胞外囊泡通过激活 FPR1/2 通路增强多微生物败血症中巨噬细胞的吞噬能力
IF 6 2区 医学
Molecular Medicine Pub Date : 2024-11-14 DOI: 10.1186/s10020-024-00959-9
Ruiyao Zhu, Yu Zhang, Xiaohong Wang, Benjamin D Liu, Debabrata Chowdhury, Zhixin Li, Mingliang Pan, Tianqing Peng, Jing Chen, Wei Huang, Liying Zhan, Guo-Chang Fan
{"title":"Probiotic bacteria-released extracellular vesicles enhance macrophage phagocytosis in polymicrobial sepsis by activating the FPR1/2 pathway.","authors":"Ruiyao Zhu, Yu Zhang, Xiaohong Wang, Benjamin D Liu, Debabrata Chowdhury, Zhixin Li, Mingliang Pan, Tianqing Peng, Jing Chen, Wei Huang, Liying Zhan, Guo-Chang Fan","doi":"10.1186/s10020-024-00959-9","DOIUrl":"10.1186/s10020-024-00959-9","url":null,"abstract":"<p><strong>Background: </strong>Sepsis-induced organ failure and high mortality are largely ascribed to the failure of bacterial clearance from the infected tissues. Recently, probiotic bacteria-released extracellular vesicles (BEVs) have been implicated as critical mediators of intercellular communication which are widely involved in the regulation of the inflammatory response. However, their functional role in macrophage phagocytosis during sepsis has never been explored.</p><p><strong>Methods: </strong>BEVs were collected from three different strains of probiotics including Lactiplantibacillus plantarum WCFS1 (LP WCFS1), Lactobacillus rhamnosus Gorbach-Goldin (LGG), and Escherichia coli Nissle 1917 (EcN), or from LGG cultured under three pH conditions (pH5-acid, pH6.5-standard, pH8-akaline) through differential centrifugation, filtration, and ultracentrifugation of their culture supernatants. In vitro phagocytosis was measured in Raw264.7 cells and bone marrow-derived macrophages using pHrodo red E. coli BioParticles. The in vivo therapeutic effects of BEVs were tested using a feces-injection-in-peritoneum (FIP) model of polymicrobial sepsis.</p><p><strong>Results: </strong>LGG-derived EVs (BEV<sup>LGG</sup>) were the best among these three probiotics BEVs in stimulating macrophages to take up bacteria. Furthermore, BEV<sup>LGG</sup> collected from pH8 culture condition (BEV<sup>pH8</sup>) exhibited the strongest capacity of phagocytosis, compared with BEV<sup>pH5</sup> and BEV<sup>pH6.5</sup>. Treatment of septic mice with BEV<sup>pH8</sup> significantly prolonged animal survival; increased bacterial clearance from the blood, peritoneal lavage fluid, and multiple organs; and decreased serum levels of pro-inflammatory cytokines/chemokines, as well as reduced multiple organ injuries, in comparison with control-treated septic mice. Mechanistically, RNA-seq and bioinformatic analysis identified that the FPR1/2 signaling was remarkably activated, along with its downstream pathways (PI3K-Akt-MARCO and NADPH-ROS) in BEV<sup>pH8</sup>-treated macrophages, compared with control cells. Accordingly, pre-addition of Boc2, a specific antagonist of FPR1/FPR2, to macrophages significantly attenuated BEV<sup>pH8</sup>-mediated phagocytosis, compared to controls.</p><p><strong>Conclusions: </strong>This study demonstrates that LGG-derived BEVs may have therapeutic effects against sepsis-induced organ injury and mortality through enhancing FPR1/2-mediated macrophage phagocytosis.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"216"},"PeriodicalIF":6.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566284/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hormonal interventions in skin wounds - a mini review. 皮肤创伤中的激素干预--微型综述。
IF 6 2区 医学
Molecular Medicine Pub Date : 2024-11-14 DOI: 10.1186/s10020-024-00978-6
Zeming Li, Rui Ma, Jiajun Tan, Chunmeng Li, Yang Xiao, Xudong Qiu, Shuo Jin, Peng Ouyang, Yiping Zhao, Xiao Xiang, Wang Wu
{"title":"Hormonal interventions in skin wounds - a mini review.","authors":"Zeming Li, Rui Ma, Jiajun Tan, Chunmeng Li, Yang Xiao, Xudong Qiu, Shuo Jin, Peng Ouyang, Yiping Zhao, Xiao Xiang, Wang Wu","doi":"10.1186/s10020-024-00978-6","DOIUrl":"10.1186/s10020-024-00978-6","url":null,"abstract":"<p><p>The ability to heal from wounds is perhaps the most important biological function that ensures our survival and perpetuation. Cutaneous wound healing typically consists of four characteristic stages, namely hemostasis, inflammation, proliferation, and remodeling, which are carefully carried out by coordinated actions of various cells, cytokines, and hormones. Incoordination of these steps may impede complete and efficient reconstruction and functional recovery of wounds or even lead to worsened outcomes. Hormones, as powerful modulators of organ functions, participate in multiple steps of the wound healing process and play a pivotal role by choreographing the complex interplay of cellular and molecular events. Leveraging the regulatory effects of hormones to enhance the healing process, hormonal therapy has emerged as a promising approach in the clinical treatment of wounds. Current research has focused on determination of the optimal dosages, delivery methods, and combinations of hormonal therapies to maximize their therapeutic benefits while minimizing potential side effects. This review highlights the molecular mechanisms, clinical benefits and side effects of the most commonly used hormones in clinical treatment of wounds.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"217"},"PeriodicalIF":6.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信