Shilu Luo, Ming Yang, Na Jiang, Chenrui Li, Yan Liu, Lin Sun
{"title":"Bavachin ameliorates cisplatin-induced nephrotoxicity by enhancing mitochondrial β-oxidation and lipid metabolism through MFN2.","authors":"Shilu Luo, Ming Yang, Na Jiang, Chenrui Li, Yan Liu, Lin Sun","doi":"10.1186/s10020-025-01283-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cisplatin-induced nephrotoxicity is a critical adverse reaction that restricts the clinical utilization of cisplatin. Alterations in fatty acid metabolism have been associated with the pathogenesis of cisplatin-induced nephrotoxicity, yet the precise mechanisms remain unclear. Bavachin, a natural flavonoid, exhibits anti-inflammatory, antioxidant, and lipid metabolism-regulating properties, yet its role in mitigating cisplatin-induced nephrotoxicity via mitochondrial β-oxidation remains unexplored. Mitofusin-2 (MFN2), a mitochondrial fusion protein, has emerged as a critical regulator of fatty acid oxidation (FAO) and lipid homeostasis. However, its role in cisplatin-induced nephrotoxicity has not been fully explored.</p><p><strong>Methods: </strong>C57/6L mice were randomly divided into control, DMSO, cisplatin, and cisplatin + Bavachin groups. Blood urea nitrogen (BUN), serum creatinine (SCr), reactive-oxygen-species (ROS), lipid accumulation, and apoptosis were assessed. In vitro, the human proximal tubule epithelial cell line (HK-2) cells were treated with 20 µM cisplatin with or without bavachin. ROS production was detected by the DCFH-DA, lipid deposition was detected by oil red O staining, and MFN2, carnitine palmitoyltransferase 1a (CPT1a) were detected by Western blot (WB).</p><p><strong>Results: </strong>Compared with the cisplatin group, bavachin treatment reduced BUN (21.8%) and SCr (78.7%) in the cisplatin group, accompanied by improvements in renal pathological changes, lipid deposition, and apoptosis. In addition, bavachin up-regulated the expression of MFN2 and CPT1a, while decreasing the cisplatin-induced ROS overproduction. Similar results were found in vitro. Notably, the mitochondrial FAO has been increased in HK-2 cells treated with bavachin. Further, MFN2 siRNA partially reversed these protective effects, accompanied by decreased CPT1a expression and exacerbated lipid deposition.</p><p><strong>Conclusions: </strong>This study is the first to confirm MFN2 as a target for renal protection by bavachin. Mechanistically, Bavachin alleviated cisplatin-induced lipid accumulation and apoptosis by upregulating MFN2 expression, which activated CPT1a to promote mitochondrial FAO. These results will provide a new strategy for cisplatin-based cancer therapy and the reduction of its nephrotoxicity.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"234"},"PeriodicalIF":6.4000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12160371/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01283-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cisplatin-induced nephrotoxicity is a critical adverse reaction that restricts the clinical utilization of cisplatin. Alterations in fatty acid metabolism have been associated with the pathogenesis of cisplatin-induced nephrotoxicity, yet the precise mechanisms remain unclear. Bavachin, a natural flavonoid, exhibits anti-inflammatory, antioxidant, and lipid metabolism-regulating properties, yet its role in mitigating cisplatin-induced nephrotoxicity via mitochondrial β-oxidation remains unexplored. Mitofusin-2 (MFN2), a mitochondrial fusion protein, has emerged as a critical regulator of fatty acid oxidation (FAO) and lipid homeostasis. However, its role in cisplatin-induced nephrotoxicity has not been fully explored.
Methods: C57/6L mice were randomly divided into control, DMSO, cisplatin, and cisplatin + Bavachin groups. Blood urea nitrogen (BUN), serum creatinine (SCr), reactive-oxygen-species (ROS), lipid accumulation, and apoptosis were assessed. In vitro, the human proximal tubule epithelial cell line (HK-2) cells were treated with 20 µM cisplatin with or without bavachin. ROS production was detected by the DCFH-DA, lipid deposition was detected by oil red O staining, and MFN2, carnitine palmitoyltransferase 1a (CPT1a) were detected by Western blot (WB).
Results: Compared with the cisplatin group, bavachin treatment reduced BUN (21.8%) and SCr (78.7%) in the cisplatin group, accompanied by improvements in renal pathological changes, lipid deposition, and apoptosis. In addition, bavachin up-regulated the expression of MFN2 and CPT1a, while decreasing the cisplatin-induced ROS overproduction. Similar results were found in vitro. Notably, the mitochondrial FAO has been increased in HK-2 cells treated with bavachin. Further, MFN2 siRNA partially reversed these protective effects, accompanied by decreased CPT1a expression and exacerbated lipid deposition.
Conclusions: This study is the first to confirm MFN2 as a target for renal protection by bavachin. Mechanistically, Bavachin alleviated cisplatin-induced lipid accumulation and apoptosis by upregulating MFN2 expression, which activated CPT1a to promote mitochondrial FAO. These results will provide a new strategy for cisplatin-based cancer therapy and the reduction of its nephrotoxicity.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.