Shuo Zhang, Yue Gao, Yini Zhao, Timothy Y. Huang, Qiuyang Zheng, Xin Wang
{"title":"Peripheral and central neuroimmune mechanisms in Alzheimer’s disease pathogenesis","authors":"Shuo Zhang, Yue Gao, Yini Zhao, Timothy Y. Huang, Qiuyang Zheng, Xin Wang","doi":"10.1186/s13024-025-00812-5","DOIUrl":"https://doi.org/10.1186/s13024-025-00812-5","url":null,"abstract":"Alzheimer’s disease (AD) poses a growing global health challenge as populations age. Recent research highlights the crucial role of peripheral immunity in AD pathogenesis. This review explores how blood-brain barrier disruption allows peripheral immune cells to infiltrate the central nervous system (CNS), worsening neuroinflammation and disease progression. We examine recent findings on interactions between peripheral immune cells and CNS-resident microglia, forming a self-perpetuating inflammatory cycle leading to neuronal dysfunction. Moreover, this review emphasizes recent developments in the dysregulation of immune factors from both the periphery and CNS, and their impact on AD progression. With ongoing research and development of new therapeutic strategies, this review underscores the importance of modulating interactions between the peripheral immune system and CNS in AD therapy.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"81 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143462806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanisms of astrocyte aging in reactivity and disease","authors":"Holly K. Gildea, Shane A. Liddelow","doi":"10.1186/s13024-025-00810-7","DOIUrl":"https://doi.org/10.1186/s13024-025-00810-7","url":null,"abstract":"Normal aging alters brain functions and phenotypes. However, it is not well understood how astrocytes are impacted by aging, nor how they contribute to neuronal dysfunction and disease risk as organisms age. Here, we examine the transcriptional, cell biology, and functional differences in astrocytes across normal aging. Astrocytes at baseline are heterogenous, responsive to their environments, and critical regulators of brain microenvironments and neuronal function. With increasing age, astrocytes adopt different immune-related and senescence-associated states, which relate to organelle dysfunction and loss of homeostasis maintenance, both cell autonomously and non-cell autonomously. These perturbed states are increasingly associated with age-related dysfunction and the onset of neurodegeneration, suggesting that astrocyte aging is a compelling target for future manipulation in the prevention of disease.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"16 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143462807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Astrid Bravo-Jimenez, Shivangi Sharma, Soheila Karimi-Abdolrezaee
{"title":"The integrated stress response in neurodegenerative diseases","authors":"Maria Astrid Bravo-Jimenez, Shivangi Sharma, Soheila Karimi-Abdolrezaee","doi":"10.1186/s13024-025-00811-6","DOIUrl":"https://doi.org/10.1186/s13024-025-00811-6","url":null,"abstract":"The integrated stress response (ISR) is a conserved network in eukaryotic cells that mediates adaptive responses to diverse stressors. The ISR pathway ensures cell survival and homeostasis by regulating protein synthesis in response to internal or external stresses. In recent years, the ISR has emerged as an important regulator of the central nervous system (CNS) development, homeostasis and pathology. Dysregulation of ISR signaling has been linked to several neurodegenerative diseases. Intriguingly, while acute ISR provide neuroprotection through the activation of cell survival mechanisms, prolonged ISR can promote neurodegeneration through protein misfolding, oxidative stress, and mitochondrial dysfunction. Understanding the molecular mechanisms and dynamics of the ISR in neurodegenerative diseases aids in the development of effective therapies. Here, we will provide a timely review on the cellular and molecular mechanisms of the ISR in neurodegenerative diseases. We will highlight the current knowledge on the dual role that ISR plays as a protective or disease worsening pathway and will discuss recent advances on the therapeutic approaches that have been developed to target ISR activity in neurodegenerative diseases.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"14 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143443173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ambra Stefani, Elena Antelmi, Dario Arnaldi, Isabelle Arnulf, Emmanuel During, Birgit Högl, Michele M. T. Hu, Alex Iranzo, Russell Luke, John Peever, Ronald B. Postuma, Aleksandar Videnovic, Ziv Gan-Or
{"title":"From mechanisms to future therapy: a synopsis of isolated REM sleep behavior disorder as early synuclein-related disease","authors":"Ambra Stefani, Elena Antelmi, Dario Arnaldi, Isabelle Arnulf, Emmanuel During, Birgit Högl, Michele M. T. Hu, Alex Iranzo, Russell Luke, John Peever, Ronald B. Postuma, Aleksandar Videnovic, Ziv Gan-Or","doi":"10.1186/s13024-025-00809-0","DOIUrl":"https://doi.org/10.1186/s13024-025-00809-0","url":null,"abstract":"Parkinson disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy are synucleinopathies, characterized by neuronal loss, gliosis and the abnormal deposition of α-synuclein in vulnerable areas of the nervous system. Neurodegeneration begins however several years before clinical onset of motor, cognitive or autonomic symptoms. The isolated form of REM sleep behavior disorder (RBD), a parasomnia with dream enactment behaviors and excessive muscle activity during REM sleep, is an early stage synucleinopathy. The neurophysiological hallmark of RBD is REM sleep without atonia (RWSA), i.e. the loss of physiological muscle atonia during REM sleep. RBD pathophysiology is not fully clarified yet, but clinical and basic science suggest that ɑ-syn pathology begins in the lower brainstem where REM atonia circuits are located, including the sublaterodorsal tegmental/subcoeruleus nucleus and the ventral medulla, then propagates rostrally to brain regions such as the substantia nigra, limbic system, cortex. Genetically, there is only a partial overlap between RBD, PD and DLB, and individuals with iRBD may represent a specific subpopulation. A genome-wide association study identified five loci, which all seem to revolve around the GBA1 pathway. iRBD patients often show subtle motor, cognitive, autonomic and/or sensory signs, neuroimaging alterations as well as biofluid and tissue markers of neurodegeneration (in particular pathologic α-synuclein aggregates), which can be useful for risk stratification. Patients with iRBD represent thus the ideal population for neuroprotective/neuromodulating trials. This review provides insights into these aspects, highlighting and substantiating the central role of iRBD in treatment development strategies for synucleinopathies.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"57 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143393569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Callan L. Attwell, Inés Maldonado-Lasunción, Ruben Eggers, Bastiaan A. Bijleveld, Ward M. Ellenbroek, Natascha Siersema, Lotte Razenberg, Dédé Lamme, Nitish D. Fagoe, Ronald E. van Kesteren, August B. Smit, Joost Verhaagen, Matthew R. J. Mason
{"title":"The transcription factor combination MEF2 and KLF7 promotes axonal sprouting in the injured spinal cord with functional improvement and regeneration-associated gene expression","authors":"Callan L. Attwell, Inés Maldonado-Lasunción, Ruben Eggers, Bastiaan A. Bijleveld, Ward M. Ellenbroek, Natascha Siersema, Lotte Razenberg, Dédé Lamme, Nitish D. Fagoe, Ronald E. van Kesteren, August B. Smit, Joost Verhaagen, Matthew R. J. Mason","doi":"10.1186/s13024-025-00805-4","DOIUrl":"https://doi.org/10.1186/s13024-025-00805-4","url":null,"abstract":"Axon regeneration after injury to the central nervous system (CNS) is limited by an inhibitory environment but also because injured neurons fail to initiate expression of regeneration associated genes (RAGs). The potential of strong RAG expression to promote regeneration in the CNS is exemplified by the conditioning lesion model, whereby peripheral nerve injury promotes regeneration of centrally projecting branches of the injured neurons. RAG expression could potentially be induced by delivery of the right set of transcription factors (TFs). We here aim to identify TF combinations that activate this program. We first analysed binding site motifs in promoters of the RAG program to identify nine candidate growth-promoting TFs. These were systematically screened in vitro to identify combinations that had potent neurite-growth promoting activity. Next, adeno-associated viral vectors were used to express these TF combinations in vivo in L4/L5 dorsal root ganglia to test whether they would promote regeneration in a spinal cord injury model (dorsal column lesion) in female rats. To determine whether they could activate the RAG program we carried out gene expression profiling on laser-dissected dorsal root ganglion neurons specifically expressing these TF combinations, and of DRG neurons that had been axotomized. Promoter analysis identified ATF3, Jun, CEBPD, KLF7, MEF2, SMAD1, SOX11, STAT3 and SRF as candidate RAG-activating TFs. In vitro screening identified two TF combinations, KLF7/MEF2 and ATF3/KLF7/MEF2, that had potent neurite-growth promoting activity, the latter being the more powerful. In vivo, KLF7/MEF2, but not ATF3/KLF7/MEF2 or KLF7 or MEF2 alone, promoted axonal sprouting into the dorsal column lesion site and led to improved functional recovery. Gene expression profiling revealed that unexpectedly, the MEF2-VP16 construct used had little transcriptional activity in vivo, suggesting additional steps may be required to achieve full MEF2 activity. All combinations except MEF2 alone induced RAG expression mirroring that induced by axotomy to significant extents, while ATF3/KLF7/MEF2, KLF7 and ATF3, but not KLF7/MEF2 also induced apoptosis-related genes which may hinder regeneration. The TF combination KLF7/MEF2 partially mimics the conditioning lesion effect, inducing axonal sprouting into a dorsal column lesion and driving significant RAG expression, and also promotes functional improvement.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"29 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143367450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali Yousefian-Jazi, Suhyun Kim, Jiyeon Chu, Seung-Hye Choi, Phuong Thi Thanh Nguyen, Uiyeol Park, Min-gyeong Kim, Hongik Hwang, Kyungeun Lee, Yeyun Kim, Seung Jae Hyeon, Hyewhon Rhim, Hannah L. Ryu, Grewo Lim, Thor D. Stein, Kayeong Lim, Hoon Ryu, Junghee Lee
{"title":"Loss of MEF2C function by enhancer mutation leads to neuronal mitochondria dysfunction and motor deficits in mice","authors":"Ali Yousefian-Jazi, Suhyun Kim, Jiyeon Chu, Seung-Hye Choi, Phuong Thi Thanh Nguyen, Uiyeol Park, Min-gyeong Kim, Hongik Hwang, Kyungeun Lee, Yeyun Kim, Seung Jae Hyeon, Hyewhon Rhim, Hannah L. Ryu, Grewo Lim, Thor D. Stein, Kayeong Lim, Hoon Ryu, Junghee Lee","doi":"10.1186/s13024-024-00792-y","DOIUrl":"https://doi.org/10.1186/s13024-024-00792-y","url":null,"abstract":"Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the loss of both upper and lower motor neurons, leading to progressive paralysis. Both genetic alterations and epigenetic modifications contribute to neuronal dysfunction in the pathogenesis of ALS. However, the mechanism behind genetic mutations in the non-coding region of genes that affect epigenetic modifications remains unclear. Convolutional neural network was used to identify an ALS-associated SNP located in the intronic region of MEF2C (rs304152), residing in a putative enhancer element. To examine the alteration of MEF2C transcription by the SNP, we generated HEK293T cells carrying the major or minor allele by CRISPR-Cas9. To verify the role of MEF2C-knockdown (MEF2C-KD) in mice, we developed AAV expressing shRNA for MEF2C based on AAV-U6 promoter vector. Neuropathological alterations of MEF2C-KD mice with mitochondrial dysfunction and motor neuronal damage were observed by confocal microscopy and transmission electron microscope (TEM). Behavioral changes of mice were examined through longitudinal study by tail suspension, inverted grid test and automated gait analysis. Here, we show that enhancer mutation of MEF2C reduces own gene expression and consequently impairs mitochondrial function in motor neurons. MEF2C localizes and binds to the mitochondria DNA, and directly modulates mitochondria-encoded gene expression. CRISPR/Cas-9-induced mutation of the MEF2C enhancer decreases expression of mitochondria-encoded genes. Moreover, MEF2C mutant cells show reduction of mitochondrial membrane potential, ATP level but elevation of oxidative stress. MEF2C deficiency in the upper and lower motor neurons of mice impairs mitochondria-encoded genes, and leads to mitochondrial metabolic disruption and progressive motor behavioral deficits. Together, MEF2C dysregulation by the enhancer mutation leads to mitochondrial dysfunction and oxidative stress, which are prevalent features in motor neuronal damage and ALS pathogenesis. This genetic and epigenetic crosstalk mechanism provides insights for advancing our understanding of motor neuron disease and developing effective treatments.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"9 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143367453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ting Shen, Jacob W. Vogel, Vivianna M. Van Deerlin, EunRan Suh, Laynie Dratch, Jeffrey S. Phillips, Lauren Massimo, Edward B. Lee, David J. Irwin, Corey T. McMillan
{"title":"Disparate and shared transcriptomic signatures associated with cortical atrophy in genetic behavioral variant frontotemporal degeneration","authors":"Ting Shen, Jacob W. Vogel, Vivianna M. Van Deerlin, EunRan Suh, Laynie Dratch, Jeffrey S. Phillips, Lauren Massimo, Edward B. Lee, David J. Irwin, Corey T. McMillan","doi":"10.1186/s13024-025-00806-3","DOIUrl":"https://doi.org/10.1186/s13024-025-00806-3","url":null,"abstract":"Cortical atrophy is a common manifestation in behavioral variant frontotemporal degeneration (bvFTD), exhibiting spatial heterogeneity across various genetic subgroups, which may be driven by distinct biological mechanisms. We employed an integrative imaging transcriptomics approach to identify both disparate and shared transcriptomic signatures associated with cortical thickness in bvFTD with C9orf72 repeat expansions or pathogenic variants in GRN or MAPT. Functional enrichment analyses were conducted on each gene list significantly associated with cortical thickness. Additionally, we mapped neurotransmitter receptor/transporter density maps to the cortical thickness maps, to uncover different correlation patterns for each genetic form. Furthermore, we examined whether the identified genes were enriched for pathology-related genes by using previously identified genes linked to TDP-43 positive neurons and genes associated with tau pathology. For each genetic form of bvFTD, we identified cortical thickness signatures and gene sets associated with them. The cortical thickness associated genes for GRN-bvFTD were significantly involved in neurotransmitter system and circadian entrainment. The different patterns of spatial correlations between synaptic density and cortical thinning, further confirmed the critical role of neurotransmission and synaptic signaling in shaping brain structure, especially in the GRN-bvFTD group. Furthermore, we observed significant overlap between genes linked to TDP-43 pathology and the gene sets associated with cortical thickness in C9orf72-bvFTD and GRN-bvFTD but not the MAPT-bvFTD group providing specificity for our associations. C9orf72-bvFTD and GRN-bvFTD also shared genes displaying consistent directionality, with those exhibiting either positive or negative correlations with cortical thickness in C9orf72-bvFTD showing the same direction (positive or negative) in GRN-bvFTD. MAPT-bvFTD displayed more pronounced differences in transcriptomic signatures compared to the other two genetic forms. The genes that exhibited significantly positive or negative correlations with cortical thickness in MAPT-bvFTD showed opposing directionality in C9orf72-bvFTD and GRN-bvFTD. Overall, this integrative transcriptomic approach identified several new shared and disparate genes associated with regional vulnerability with increased biological interpretation including overlap with synaptic density maps and pathologically-specific gene expression. These findings illuminated the intricate molecular underpinnings contributing to the heterogeneous nature of disease distribution in bvFTD with distinct genetic backgrounds.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"1 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143367449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shaowei Wang, Boyang Li, Jie Li, Zhiheng Cai, Cristelle Hugo, Yi Sun, Lu Qian, Julia TCW, Helena C. Chui, Dante Dikeman, Isaac Asante, Stan G. Louie, David A. Bennett, Zoe Arvanitakis, Alan T. Remaley, Bilal E. Kerman, Hussein N. Yassine
{"title":"Cellular senescence induced by cholesterol accumulation is mediated by lysosomal ABCA1 in APOE4 and AD","authors":"Shaowei Wang, Boyang Li, Jie Li, Zhiheng Cai, Cristelle Hugo, Yi Sun, Lu Qian, Julia TCW, Helena C. Chui, Dante Dikeman, Isaac Asante, Stan G. Louie, David A. Bennett, Zoe Arvanitakis, Alan T. Remaley, Bilal E. Kerman, Hussein N. Yassine","doi":"10.1186/s13024-025-00802-7","DOIUrl":"https://doi.org/10.1186/s13024-025-00802-7","url":null,"abstract":"Cellular senescence, a hallmark of aging, has been implicated in Alzheimer’s disease (AD) pathogenesis. Cholesterol accumulation is known to drive cellular senescence; however, its underlying mechanisms are not fully understood. ATP-binding cassette transporter A1 (ABCA1) plays an important role in cholesterol homeostasis, and its expression and trafficking are altered in APOE4 and AD models. However, the role of ABCA1 trafficking in cellular senescence associated with APOE4 and AD remains unclear. We examined the association between cellular senescence and ABCA1 expression in human postmortem brain samples using transcriptomic, histological, and biochemical analyses. Unbiased proteomic screening was performed to identify the proteins that mediate cellular ABCA1 trafficking. We created ABCA1 knock out cell lines and mouse models to validate the role of ABCA1 in cholesterol-induced mTORC1 activation and senescence. Additionally, we used APOE4-TR mice and induced pluripotent stem cell (iPSC) models to explore cholesterol-ABCA1-senescence pathways. Transcriptomic profiling of the human dorsolateral prefrontal cortex from the Religious Order Study/Memory Aging Project (ROSMAP) cohort revealed the upregulation of cellular senescence transcriptome signatures in AD, which correlated with ABCA1 expression and oxysterol levels. Immunofluorescence and immunoblotting analyses confirmed increased lipofuscin-stained lipids and ABCA1 expression in AD brains and an association with mTOR phosphorylation. Discovery proteomics identified caveolin-1, a sensor of cellular cholesterol accumulation, as a key promoter of ABCA1 endolysosomal trafficking. Greater caveolin-1 expression was observed in APOE4-TR mouse models and AD human brains. Oxysterol induced mTORC1 activation and senescence were regulated by ABCA1 lysosomal trapping. Treatment of APOE4-TR mice with cyclodextrin reduced brain oxysterol levels, ABCA1 lysosome trapping, mTORC1 activation, and attenuated senescence and neuroinflammation markers. In human iPSC-derived astrocytes, the reduction of cholesterol by cyclodextrin attenuated inflammatory responses. Oxysterol accumulation in APOE4 and AD induced ABCA1 and caveolin-1 expression, contributing to lysosomal dysfunction and increased cellular senescence markers. This study provides novel insights into how cholesterol metabolism accelerates features of brain cellular senescence pathway and identifies therapeutic targets to mitigate these processes.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"77 2 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143083437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timothy R. Sampson, Malú Gámez Tansey, Andrew B. West, Rodger A. Liddle
{"title":"Lewy body diseases and the gut","authors":"Timothy R. Sampson, Malú Gámez Tansey, Andrew B. West, Rodger A. Liddle","doi":"10.1186/s13024-025-00804-5","DOIUrl":"https://doi.org/10.1186/s13024-025-00804-5","url":null,"abstract":"Gastrointestinal (GI) involvement in Lewy body diseases (LBDs) has been observed since the initial descriptions of patients by James Parkinson. Recent experimental and human observational studies raise the possibility that pathogenic alpha-synuclein (⍺-syn) might develop in the GI tract and subsequently spread to susceptible brain regions. The cellular and mechanistic origins of ⍺-syn propagation in disease are under intense investigation. Experimental LBD models have implicated important contributions from the intrinsic gut microbiome, the intestinal immune system, and environmental toxicants, acting as triggers and modifiers to GI pathologies. Here, we review the primary clinical observations that link GI dysfunctions to LBDs. We first provide an overview of GI anatomy and the cellular repertoire relevant for disease, with a focus on luminal-sensing cells of the intestinal epithelium including enteroendocrine cells that express ⍺-syn and make direct contact with nerves. We describe interactions within the GI tract with resident microbes and exogenous toxicants, and how these may directly contribute to ⍺-syn pathology along with related metabolic and immunological responses. Finally, critical knowledge gaps in the field are highlighted, focusing on pivotal questions that remain some 200 years after the first descriptions of GI tract dysfunction in LBDs. We predict that a better understanding of how pathophysiologies in the gut influence disease risk and progression will accelerate discoveries that will lead to a deeper overall mechanistic understanding of disease and potential therapeutic strategies targeting the gut-brain axis to delay, arrest, or prevent disease progression.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"30 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular and cellular characteristics of cerebrovascular cell types and their contribution to neurodegenerative diseases","authors":"Francisco J. Garcia, Myriam Heiman","doi":"10.1186/s13024-025-00799-z","DOIUrl":"https://doi.org/10.1186/s13024-025-00799-z","url":null,"abstract":"Many diseases and disorders of the nervous system suffer from a lack of adequate therapeutics to halt or slow disease progression, and to this day, no cure exists for any of the fatal neurodegenerative diseases. In part this is due to the incredible diversity of cell types that comprise the brain, knowledge gaps in understanding basic mechanisms of disease, as well as a lack of reliable strategies for delivering new therapeutic modalities to affected areas. With the advent of single cell genomics, it is now possible to interrogate the molecular characteristics of diverse cell populations and their alterations in diseased states. More recently, much attention has been devoted to cell populations that have historically been difficult to profile with bulk single cell technologies. In particular, cell types that comprise the cerebrovasculature have become increasingly better characterized in normal and neurodegenerative disease contexts. In this review, we describe the current understanding of cerebrovasculature structure, function, and cell type diversity and its role in the mechanisms underlying various neurodegenerative diseases. We focus on human and mouse cerebrovasculature studies and discuss both origins and consequences of cerebrovascular dysfunction, emphasizing known cell type-specific vulnerabilities in neuronal and cerebrovascular cell populations. Lastly, we highlight how novel insights into cerebrovascular biology have impacted the development of modern therapeutic approaches and discuss outstanding questions in the field.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"3 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}