Molecular Neurodegeneration最新文献

筛选
英文 中文
Aging-associated sensory decline and Alzheimer’s disease 与衰老相关的感官衰退和阿尔茨海默病
IF 15.1 1区 医学
Molecular Neurodegeneration Pub Date : 2024-12-04 DOI: 10.1186/s13024-024-00776-y
Suji Hong, Seung-Hyun Baek, Mitchell K. P. Lai, Thiruma V. Arumugam, Dong-Gyu Jo
{"title":"Aging-associated sensory decline and Alzheimer’s disease","authors":"Suji Hong, Seung-Hyun Baek, Mitchell K. P. Lai, Thiruma V. Arumugam, Dong-Gyu Jo","doi":"10.1186/s13024-024-00776-y","DOIUrl":"https://doi.org/10.1186/s13024-024-00776-y","url":null,"abstract":"Multisensory decline is common as people age, and aging is the primary risk of Alzheimer’s Disease (AD). Recent studies have begun to shed light on the possibility that age-related sensory decline could accelerate AD pathogenesis, or be a prodromal indicator of AD. Sensory impairments, specifically in taste and smell, often emerge before cognitive symptoms in AD, indicating their potential as early biomarkers. Olfactory dysfunction has been frequently associated with AD and may offer valuable insights into early detection. Hearing impairment is significantly associated with AD, but its causal impact on AD progression remains unclear. The review also discusses visual and tactile deficits in AD, including retinal thinning and changes in tactile perception, highlighting their links to disease progression. Focusing on molecular mechanisms, the review explores the roles of amyloid-β (Aβ) accumulation and tau protein pathology in sensory decline and their bidirectional relationship with AD. In summary, the evidence presented conclusively supports advocating for an integrated approach to understanding AD and sensory decline, to enhance early detection, implementing preventive strategies, and developing therapeutic interventions for AD. This approach underscores the significance of sensory health in addressing neurodegenerative diseases, particularly AD.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"82 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142763077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seeding activity of skin misfolded tau as a biomarker for tauopathies. 皮肤错误折叠tau蛋白的种子活性作为tau病的生物标志物。
IF 14.9 1区 医学
Molecular Neurodegeneration Pub Date : 2024-11-29 DOI: 10.1186/s13024-024-00781-1
Zerui Wang, Ling Wu, Maria Gerasimenko, Tricia Gilliland, Zahid Syed Ali Shah, Evalynn Lomax, Yirong Yang, Steven A Gunzler, Vincenzo Donadio, Rocco Liguori, Bin Xu, Wen-Quan Zou
{"title":"Seeding activity of skin misfolded tau as a biomarker for tauopathies.","authors":"Zerui Wang, Ling Wu, Maria Gerasimenko, Tricia Gilliland, Zahid Syed Ali Shah, Evalynn Lomax, Yirong Yang, Steven A Gunzler, Vincenzo Donadio, Rocco Liguori, Bin Xu, Wen-Quan Zou","doi":"10.1186/s13024-024-00781-1","DOIUrl":"10.1186/s13024-024-00781-1","url":null,"abstract":"<p><strong>Background: </strong>Tauopathies are a group of age-related neurodegenerative diseases characterized by the accumulation of pathologically hyperphosphorylated tau protein in the brain, leading to prion-like aggregation and propagation. They include Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD). Currently, reliable diagnostic biomarkers that directly reflect the capability of propagation and spreading of misfolded tau aggregates in peripheral tissues and body fluids are lacking.</p><p><strong>Methods: </strong>We utilized the seed-amplification assay (SAA) employing ultrasensitive real-time quaking-induced conversion (RT-QuIC) to assess the prion-like seeding activity of pathological tau in the skin of cadavers with neuropathologically confirmed tauopathies, including AD, PSP, CBD, and PiD, compared to normal controls.</p><p><strong>Results: </strong>We found that the skin tau-SAA demonstrated a significantly higher sensitivity (75-80%) and specificity (95-100%) for detecting tauopathy, depending on the tau substrates used. Moreover, the increased tau-seeding activity was also observed in biopsy skin samples from living AD and PSP patients examined. Analysis of the end products of skin-tau SAA confirmed that the increased seeding activity was accompanied by the formation of tau aggregates with different physicochemical properties related to two different tau substrates used.</p><p><strong>Conclusions: </strong>Overall, our study provides proof-of-concept that the skin tau-SAA can differentiate tauopathies from normal controls, suggesting that the seeding activity of misfolded tau in the skin could serve as a diagnostic biomarker for tauopathies.</p>","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"19 1","pages":"92"},"PeriodicalIF":14.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606191/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142750817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NOTCH2NLC GGC intermediate repeat with serine induces hypermyelination and early Parkinson's disease-like phenotypes in mice. 带有丝氨酸的NOTCH2NLC GGC中间重复序列在小鼠中诱导髓鞘增生和早期帕金森病样表型
IF 14.9 1区 医学
Molecular Neurodegeneration Pub Date : 2024-11-28 DOI: 10.1186/s13024-024-00780-2
Haitao Tu, Xin Yi Yeo, Zhi-Wei Zhang, Wei Zhou, Jayne Yi Tan, Li Chi, Sook-Yoong Chia, Zhihong Li, Aik Yong Sim, Brijesh Kumar Singh, Dongrui Ma, Zhidong Zhou, Isabelle Bonne, Shuo-Chien Ling, Adeline S L Ng, Sangyong Jung, Eng-King Tan, Li Zeng
{"title":"NOTCH2NLC GGC intermediate repeat with serine induces hypermyelination and early Parkinson's disease-like phenotypes in mice.","authors":"Haitao Tu, Xin Yi Yeo, Zhi-Wei Zhang, Wei Zhou, Jayne Yi Tan, Li Chi, Sook-Yoong Chia, Zhihong Li, Aik Yong Sim, Brijesh Kumar Singh, Dongrui Ma, Zhidong Zhou, Isabelle Bonne, Shuo-Chien Ling, Adeline S L Ng, Sangyong Jung, Eng-King Tan, Li Zeng","doi":"10.1186/s13024-024-00780-2","DOIUrl":"10.1186/s13024-024-00780-2","url":null,"abstract":"<p><strong>Background: </strong>The expansion of GGC repeats (typically exceeding 60 repeats) in the 5' untranslated region (UTR) of the NOTCH2NLC gene (N2C) is linked to N2C-related repeat expansion disorders (NREDs), such as neuronal intranuclear inclusion disease (NIID), frontotemporal dementia (FTD), essential tremor (ET), and Parkinson's disease (PD). These disorders share common clinical manifestations, including parkinsonism, dementia, seizures, and muscle weakness. Intermediate repeat sizes ranging from 40 to 60 GGC repeats, particularly those with AGC-encoded serine insertions, have been reported to be associated with PD; however, the functional implications of these intermediate repeats with serine insertion remain unexplored.</p><p><strong>Methods: </strong>Here, we utilized cellular models harbouring different sizes of N2C variant 2 (N2C2) GGC repeat expansion and CRISPR-Cas9 engineered transgenic mouse models carrying N2C2 GGC intermediate repeats with and without serine insertion to elucidate the underlying pathophysiology associated with N2C intermediate repeat with serine insertion in NREDs.</p><p><strong>Results: </strong>Our findings revealed that the N2C2 GGC intermediate repeat with serine insertion (32G13S) led to mitochondrial dysfunction and cell death in vitro. The neurotoxicity was influenced by the length of the repeat and was exacerbated by the presence of the serine insertion. In 12-month-old transgenic mice, 32G13S intensified intranuclear aggregation and exhibited early PD-like characteristics, including the formation of α-synuclein fibers in the midbrain and the loss of tyrosine hydroxylase (TH)-positive neurons in both the cortex and striatum. Additionally, 32G13S induced neuronal hyperexcitability and caused locomotor behavioural impairments. Transcriptomic analysis of the mouse cortex indicated dysregulation in calcium signaling and MAPK signaling pathways, both of which are critical for mitochondrial function. Notably, genes associated with myelin sheath components, including MBP and MOG, were dysregulated in the 32G13S mouse. Further investigations using immunostaining and transmission electron microscopy revealed that the N2C intermediate repeat with serine induced mitochondrial dysfunction-related hypermyelination in the cortex.</p><p><strong>Conclusions: </strong>Our in vitro and in vivo investigations provide the first evidence that the N2C-GGC intermediate repeat with serine promotes intranuclear aggregation of N2C, leading to mitochondrial dysfunction-associated hypermyelination and neuronal hyperexcitability. These changes contribute to motor deficits in early PD-like neurodegeneration in NREDs.</p>","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"19 1","pages":"91"},"PeriodicalIF":14.9,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603791/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142750792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human VCP mutant ALS/FTD microglia display immune and lysosomal phenotypes independently of GPNMB 人类 VCP 突变 ALS/FTD 小胶质细胞显示的免疫和溶酶体表型与 GPNMB 无关
IF 15.1 1区 医学
Molecular Neurodegeneration Pub Date : 2024-11-26 DOI: 10.1186/s13024-024-00773-1
Benjamin E. Clarke, Oliver J. Ziff, Giulia Tyzack, Marija Petrić Howe, Yiran Wang, Pierre Klein, Claudia A. Smith, Cameron A. Hall, Adel Helmy, Michael Howell, Gavin Kelly, Rickie Patani
{"title":"Human VCP mutant ALS/FTD microglia display immune and lysosomal phenotypes independently of GPNMB","authors":"Benjamin E. Clarke, Oliver J. Ziff, Giulia Tyzack, Marija Petrić Howe, Yiran Wang, Pierre Klein, Claudia A. Smith, Cameron A. Hall, Adel Helmy, Michael Howell, Gavin Kelly, Rickie Patani","doi":"10.1186/s13024-024-00773-1","DOIUrl":"https://doi.org/10.1186/s13024-024-00773-1","url":null,"abstract":"Microglia play crucial roles in maintaining neuronal homeostasis but have been implicated in contributing to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the role of microglia in ALS/FTD remains incompletely understood. Here, we generated highly enriched cultures of VCP mutant microglia derived from human induced pluripotent stem cells (hiPSCs) to investigate their cell autonomous and non-cell autonomous roles in ALS pathogenesis. We used RNA-sequencing, proteomics and functional assays to study hiPSC derived VCP mutant microglia and their effects on hiPSC derived motor neurons and astrocytes. Transcriptomic, proteomic and functional analyses revealed immune and lysosomal dysfunction in VCP mutant microglia. Stimulating healthy microglia with the inflammatory inducer lipopolysaccharide (LPS) showed partial overlap with VCP mutant microglia in their reactive transformation. LPS-stimulated VCP mutant microglia displayed differential activation of inflammatory pathways compared with LPS-stimulated healthy microglia. Conserved gene expression changes were identified between VCP mutant microglia, SOD1 mutant mice microglia, and postmortem ALS spinal cord microglial signatures, including increased expression of the transmembrane glycoprotein GPNMB. While knockdown of GPNMB affected inflammatory and phagocytosis processes in microglia, this was not sufficient to ameliorate cell autonomous phenotypes in VCP mutant microglia. Secreted factors from VCP mutant microglia were sufficient to activate the JAK-STAT pathway in hiPSC derived motor neurons and astrocytes. VCP mutant microglia undergo cell autonomous reactive transformation involving immune and lysosomal dysfunction that partially recapitulate key phenotypes of microglia from other ALS models and post mortem tissue. These phenotypes occur independently of GPNMB. Additionally, VCP mutant microglia elicit non cell autonomous responses in motor neurons and astrocytes involving the JAK-STAT pathway.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"8 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142713202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Parkinson’s disease risk gene cathepsin B promotes fibrillar alpha-synuclein clearance, lysosomal function and glucocerebrosidase activity in dopaminergic neurons 帕金森病风险基因 cathepsin B 可促进多巴胺能神经元中纤维状α-突触核蛋白的清除、溶酶体功能和葡萄糖脑苷脂酶的活性
IF 15.1 1区 医学
Molecular Neurodegeneration Pub Date : 2024-11-25 DOI: 10.1186/s13024-024-00779-9
Jace Jones-Tabah, Kathy He, Nathan Karpilovsky, Konstantin Senkevich, Ghislaine Deyab, Isabella Pietrantonio, Thomas Goiran, Yuting Cousineau, Daria Nikanorova, Taylor Goldsmith, Esther del Cid Pellitero, Carol X.-Q. Chen, Wen Luo, Zhipeng You, Narges Abdian, Jamil Ahmad, Jennifer A. Ruskey, Farnaz Asayesh, Dan Spiegelman, Stanley Fahn, Cheryl Waters, Oury Monchi, Yves Dauvilliers, Nicolas Dupré, Irina Miliukhina, Alla Timofeeva, Anton Emelyanov, Sofya Pchelina, Lior Greenbaum, Sharon Hassin-Baer, Roy N. Alcalay, Austen Milnerwood, Thomas M. Durcan, Ziv Gan-Or, Edward A. Fon
{"title":"The Parkinson’s disease risk gene cathepsin B promotes fibrillar alpha-synuclein clearance, lysosomal function and glucocerebrosidase activity in dopaminergic neurons","authors":"Jace Jones-Tabah, Kathy He, Nathan Karpilovsky, Konstantin Senkevich, Ghislaine Deyab, Isabella Pietrantonio, Thomas Goiran, Yuting Cousineau, Daria Nikanorova, Taylor Goldsmith, Esther del Cid Pellitero, Carol X.-Q. Chen, Wen Luo, Zhipeng You, Narges Abdian, Jamil Ahmad, Jennifer A. Ruskey, Farnaz Asayesh, Dan Spiegelman, Stanley Fahn, Cheryl Waters, Oury Monchi, Yves Dauvilliers, Nicolas Dupré, Irina Miliukhina, Alla Timofeeva, Anton Emelyanov, Sofya Pchelina, Lior Greenbaum, Sharon Hassin-Baer, Roy N. Alcalay, Austen Milnerwood, Thomas M. Durcan, Ziv Gan-Or, Edward A. Fon","doi":"10.1186/s13024-024-00779-9","DOIUrl":"https://doi.org/10.1186/s13024-024-00779-9","url":null,"abstract":"Variants in the CTSB gene encoding the lysosomal hydrolase cathepsin B (catB) are associated with increased risk of Parkinson’s disease (PD). However, neither the specific CTSB variants driving these associations nor the functional pathways that link catB to PD pathogenesis have been characterized. CatB activity contributes to lysosomal protein degradation and regulates signaling processes involved in autophagy and lysosome biogenesis. Previous in vitro studies have found that catB can cleave monomeric and fibrillar alpha-synuclein, a key protein involved in the pathogenesis of PD that accumulates in the brains of PD patients. However, truncated synuclein isoforms generated by catB cleavage have an increased propensity to aggregate. Thus, catB activity could potentially contribute to lysosomal degradation and clearance of pathogenic alpha synuclein from the cell, but also has the potential of enhancing synuclein pathology by generating aggregation-prone truncations. Therefore, the mechanisms linking catB to PD pathophysiology remain to be clarified. Here, we conducted genetic analyses of the association between common and rare CTSB variants and risk of PD. We then used genetic and pharmacological approaches to manipulate catB expression and function in cell lines, induced pluripotent stem cell-derived dopaminergic neurons and midbrain organoids and assessed lysosomal activity and the handling of aggregated synuclein fibrils. We find that catB inhibition impairs autophagy, reduces glucocerebrosidase (encoded by GBA1) activity, and leads to an accumulation of lysosomal content. In cell lines, reduction of CTSB gene expression impairs the degradation of pre-formed alpha-synuclein fibrils, whereas CTSB gene activation enhances fibril clearance. In midbrain organoids and dopaminergic neurons treated with alpha-synuclein fibrils, catB inhibition potentiates the formation of inclusions which stain positively for phosphorylated alpha-synuclein. These results indicate that the reduction of catB function negatively impacts lysosomal pathways associated with PD pathogenesis, while conversely catB activation could promote the clearance of pathogenic alpha-synuclein.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"183 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel AAV Vector for gene therapy of RPE-related retinal degenerative diseases via intravitreal delivery 一种新型 AAV 载体,通过玻璃体内递送用于 RPE 相关视网膜变性疾病的基因治疗
IF 15.1 1区 医学
Molecular Neurodegeneration Pub Date : 2024-11-25 DOI: 10.1186/s13024-024-00777-x
Yajun Gong, Xianyu Huang, Tianxiang Tu, Cenfeng Chu, Chunrui Xian, Yushun Yuan, Xin Fu, Ruobi Li, Guisheng Zhong, Xiaolai Zhou
{"title":"A novel AAV Vector for gene therapy of RPE-related retinal degenerative diseases via intravitreal delivery","authors":"Yajun Gong, Xianyu Huang, Tianxiang Tu, Cenfeng Chu, Chunrui Xian, Yushun Yuan, Xin Fu, Ruobi Li, Guisheng Zhong, Xiaolai Zhou","doi":"10.1186/s13024-024-00777-x","DOIUrl":"https://doi.org/10.1186/s13024-024-00777-x","url":null,"abstract":"&lt;p&gt;&lt;b&gt;To the editor&lt;/b&gt;,&lt;/p&gt;&lt;p&gt;Dysfunction of retinal pigment epithelium (RPE) cells leads to multiple blinding retinal degenerative diseases, including retinitis pigmentosa, age-related macular degeneration, and Stargardt disease [1]. Currently, no drug treatments are available to cure or slow the progression of these diseases, and gene therapy has been considered a promising approach. However, when delivered via intravitreal injection, commonly used vectors like AAV2 and AAV9 exhibit poor transduction rates in RPE cells. Subretinal injection, while more effective, requires sophisticated surgical skills and carries risks, such as retinal tears and detachments [2]. Therefore, developing a highly efficient RPE-specific AAV variant for intravitreal injection would be invaluable for gene therapy of RPE-related retinal degenerative diseases.&lt;/p&gt;&lt;p&gt;To identify such an AAV variant, we conducted a multi-round in vivo screening by intravitreal injection in mice with a randomized 9-mer library (diversity of 1.34E6), inserted between positions 587–588 of AAV2 capsid (Fig. 1A). We analyzed NGS data of collected viral genomes from three rounds of screening based on their read counts and enrichment scores, ultimately identifying 10 candidate variants (Supplemental Fig. 1A-I). Preliminary validation in mice revealed a variant with specific transduction for RPE cells, named AAV206 (Supplemental Fig. 1J). We then characterized the transduction properties of AAV206 in detail. Mice received intravitreal injections of AAV2-GFP and AAV206-GFP, and subsequent analysis of whole mounts of the RPE-choroid-sclera complex and retina showed that AAV2-GFP predominantly transduced neuroretinal cells with negligible transduction of RPE cells. In contrast, AAV206-GFP efficiently and specifically transduced RPE cells with minimal neuroretinal transduction (Fig. 1B-D). Consistent with these findings, frozen sections of the retina revealed that AAV2-GFP expression was mainly observed in retinal ganglion cell layer and inner nuclear layer, whereas AAV206-GFP specifically transduced RPE cells (Fig. 1E-F).&lt;/p&gt;&lt;figure&gt;&lt;figcaption&gt;&lt;b data-test=\"figure-caption-text\"&gt;Fig. 1&lt;/b&gt;&lt;/figcaption&gt;&lt;picture&gt;&lt;source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13024-024-00777-x/MediaObjects/13024_2024_777_Fig1_HTML.png?as=webp\" type=\"image/webp\"/&gt;&lt;img alt=\"figure 1\" aria-describedby=\"Fig1\" height=\"894\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13024-024-00777-x/MediaObjects/13024_2024_777_Fig1_HTML.png\" width=\"685\"/&gt;&lt;/picture&gt;&lt;p&gt;A novel RPE-specific AAV vector. &lt;b&gt;(A)&lt;/b&gt; Schematic diagram of AAV vectors screened for specific targeting of RPE cells. &lt;b&gt;(B)&lt;/b&gt; Whole mounts of mice retina and RPE-Choroid-Sclera after intravitreal injection of AAV2-GFP or AAV206-GFP for 14 days. GFP expression (green) indicates positively transduced cells. RPE cells are marked by ZO-1 (red). Scale bar: 1000 μm (left panel), 20 μm (","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"36 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142713089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nuclear pore and nucleocytoplasmic transport impairment in oxidative stress-induced neurodegeneration: relevance to molecular mechanisms in Pathogenesis of Parkinson’s and other related neurodegenerative diseases 氧化应激诱导的神经退行性病变中的核孔和核胞质转运损伤:与帕金森病和其他相关神经退行性疾病发病机制的分子机制有关
IF 15.1 1区 医学
Molecular Neurodegeneration Pub Date : 2024-11-23 DOI: 10.1186/s13024-024-00774-0
Zainab Riaz, Gabriel S. Richardson, Huajun Jin, Gary Zenitsky, Vellareddy Anantharam, Arthi Kanthasamy, Anumantha G. Kanthasamy
{"title":"Nuclear pore and nucleocytoplasmic transport impairment in oxidative stress-induced neurodegeneration: relevance to molecular mechanisms in Pathogenesis of Parkinson’s and other related neurodegenerative diseases","authors":"Zainab Riaz, Gabriel S. Richardson, Huajun Jin, Gary Zenitsky, Vellareddy Anantharam, Arthi Kanthasamy, Anumantha G. Kanthasamy","doi":"10.1186/s13024-024-00774-0","DOIUrl":"https://doi.org/10.1186/s13024-024-00774-0","url":null,"abstract":"Nuclear pore complexes (NPCs) are embedded in the nuclear envelope and facilitate the exchange of macromolecules between the nucleus and cytoplasm in eukaryotic cells. The dysfunction of the NPC and nuclear transport plays a significant role in aging and the pathogenesis of various neurodegenerative diseases. Common features among these neurodegenerative diseases, including Parkinson’s disease (PD), encompass mitochondrial dysfunction, oxidative stress and the accumulation of insoluble protein aggregates in specific brain regions. The susceptibility of dopaminergic neurons to mitochondrial stress underscores the pivotal role of mitochondria in PD progression. Disruptions in mitochondrial-nuclear communication are exacerbated by aging and α-synuclein-induced oxidative stress in PD. The precise mechanisms underlying mitochondrial impairment-induced neurodegeneration in PD are still unclear. Evidence suggests that perturbations in dopaminergic neuronal nuclei are linked to PD-related neurodegeneration. These perturbations involve structural damage to the nuclear envelope and mislocalization of pivotal transcription factors, potentially driven by oxidative stress or α-synuclein pathology. The presence of protein aggregates, pathogenic mutations, and ongoing oxidative stress can exacerbate the dysfunction of NPCs, yet this mechanism remains understudied in the context of oxidative stress-induced PD. This review summarizes the link between mitochondrial dysfunction and dopaminergic neurodegeneration and outlines the current evidence for nuclear envelope and nuclear transport abnormalities in PD, particularly in oxidative stress. We highlight the potential role of nuclear pore and nucleocytoplasmic transport dysfunction in PD and stress the importance of systematically investigating NPC components in PD.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"24 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142690838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of disease-associated microglia in the optic nerve by lipoxin B4 and ocular hypertension 脂质毒素 B4 和眼压对视神经中与疾病相关的小胶质细胞的调节作用
IF 15.1 1区 医学
Molecular Neurodegeneration Pub Date : 2024-11-20 DOI: 10.1186/s13024-024-00775-z
Shubham Maurya, Maggie Lin, Shruthi Karnam, Tanirika Singh, Matangi Kumar, Emily Ward, Jeremy Sivak, John G. Flanagan, Karsten Gronert
{"title":"Regulation of disease-associated microglia in the optic nerve by lipoxin B4 and ocular hypertension","authors":"Shubham Maurya, Maggie Lin, Shruthi Karnam, Tanirika Singh, Matangi Kumar, Emily Ward, Jeremy Sivak, John G. Flanagan, Karsten Gronert","doi":"10.1186/s13024-024-00775-z","DOIUrl":"https://doi.org/10.1186/s13024-024-00775-z","url":null,"abstract":"The resident astrocyte-retinal ganglion cell (RGC) lipoxin circuit is impaired during retinal stress, which includes ocular hypertension-induced neuropathy. Lipoxin B4 produced by homeostatic astrocytes directly acts on RGCs to increase survival and function in ocular hypertension-induced neuropathy. RGC death in the retina and axonal degeneration in the optic nerve are driven by the complex interactions between microglia and macroglia. Whether LXB4 neuroprotective actions include regulation of other cell types in the retina and/or optic nerve is an important knowledge gap. Cellular targets and signaling of LXB4 in the retina were defined by single-cell RNA sequencing. Retinal neurodegeneration was induced by injecting silicone oil into the anterior chamber of mouse eyes, which induced sustained and stable ocular hypertension. Morphological characterization of microglia populations in the retina and optic nerve was established by MorphOMICs and pseudotime trajectory analyses. The pathways and mechanisms of action of LXB4 in the optic nerve were investigated using bulk RNA sequencing. Transcriptomics data was validated by qPCR and immunohistochemistry. Differences between experimental groups were assessed by Student’s t-test and one-way ANOVA. Single-cell transcriptomics identified microglia as a primary target for LXB4 in the healthy retina. LXB4 downregulated genes that drive microglia environmental sensing and reactivity responses. Analysis of microglial function revealed that ocular hypertension induced distinct, temporally defined, and dynamic phenotypes in the retina and, unexpectedly, in the distal myelinated optic nerve. Microglial expression of CD74, a marker of disease-associated microglia in the brain, was only induced in a unique population of optic nerve microglia, but not in the retina. Genetic deletion of lipoxin formation correlated with the presence of a CD74 optic nerve microglia population in normotensive eyes, while LXB4 treatment during ocular hypertension shifted optic nerve microglia toward a homeostatic morphology and non-reactive state and downregulated the expression of CD74. Furthermore, we identified a correlation between CD74 and phospho-phosphoinositide 3-kinases (p-PI3K) expression levels in the optic nerve, which was reduced by LXB4 treatment. We identified early and dynamic changes in the microglia functional phenotype, reactivity, and induction of a unique CD74 microglia population in the distal optic nerve as key features of ocular hypertension-induced neurodegeneration. Our findings establish microglia regulation as a novel LXB4 target in the retina and optic nerve. LXB4 maintenance of a homeostatic optic nerve microglia phenotype and inhibition of a disease-associated phenotype are potential neuroprotective mechanisms for the resident LXB4 pathway.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"8 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stearoyl-CoA desaturase-1: a potential therapeutic target for neurological disorders 硬脂酰-CoA 去饱和酶-1:神经系统疾病的潜在治疗靶点
IF 15.1 1区 医学
Molecular Neurodegeneration Pub Date : 2024-11-19 DOI: 10.1186/s13024-024-00778-w
Melanie Loix, Sam Vanherle, Marta Turri, Stephan Kemp, Karl J. L. Fernandes, Jerome J. A. Hendriks, Jeroen F. J. Bogie
{"title":"Stearoyl-CoA desaturase-1: a potential therapeutic target for neurological disorders","authors":"Melanie Loix, Sam Vanherle, Marta Turri, Stephan Kemp, Karl J. L. Fernandes, Jerome J. A. Hendriks, Jeroen F. J. Bogie","doi":"10.1186/s13024-024-00778-w","DOIUrl":"https://doi.org/10.1186/s13024-024-00778-w","url":null,"abstract":"Disturbances in the fatty acid lipidome are increasingly recognized as key drivers in the progression of various brain disorders. In this review article, we delve into the impact of Δ9 fatty acid desaturases, with a particular focus on stearoyl-CoA desaturase-1 (SCD1), within the setting of neuroinflammation, neurodegeneration, and brain repair. Over the past years, it was established that inhibition or deficiency of SCD1 not only suppresses neuroinflammation but also protects against neurodegeneration in conditions such as multiple sclerosis, Alzheimer’s disease, and Parkinson’s disease. This protective effect is achieved through different mechanisms including enhanced remyelination, reversal of synaptic and cognitive impairments, and mitigation of α-synuclein toxicity. Intriguingly, metabolic rerouting of fatty acids via SCD1 improves the pathology associated with X-linked adrenoleukodystrophy, suggesting context-dependent benign and harmful effects of SCD1 inhibition in the brain. Here, we summarize and discuss the cellular and molecular mechanisms underlying both the beneficial and detrimental effects of SCD1 in these neurological disorders. We explore commonalities and distinctions, shedding light on potential therapeutic challenges. Additionally, we touch upon future research directions that promise to deepen our understanding of SCD1 biology in brain disorders and potentially enhance the clinical utility of SCD1 inhibitors.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"250 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Are oligodendrocytes the missing link in Alzheimer's disease and related dementia research? 少突胶质细胞是阿尔茨海默病和相关痴呆症研究中缺失的环节吗?
IF 14.9 1区 医学
Molecular Neurodegeneration Pub Date : 2024-11-17 DOI: 10.1186/s13024-024-00760-6
Sharyn L Rossi, Diane E Bovenkamp
{"title":"Are oligodendrocytes the missing link in Alzheimer's disease and related dementia research?","authors":"Sharyn L Rossi, Diane E Bovenkamp","doi":"10.1186/s13024-024-00760-6","DOIUrl":"10.1186/s13024-024-00760-6","url":null,"abstract":"","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"19 1","pages":"84"},"PeriodicalIF":14.9,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569602/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信