Sinead Greally, Mukesh Kumar, Christoph Schlaffner, Hanne van der Heijden, Elisabeth S. Lawton, Deeptarup Biswas, Sabina Berretta, Hanno Steen, Judith A. Steen
{"title":"Dementia with lewy bodies patients with high tau levels display unique proteome profiles","authors":"Sinead Greally, Mukesh Kumar, Christoph Schlaffner, Hanne van der Heijden, Elisabeth S. Lawton, Deeptarup Biswas, Sabina Berretta, Hanno Steen, Judith A. Steen","doi":"10.1186/s13024-024-00782-0","DOIUrl":"https://doi.org/10.1186/s13024-024-00782-0","url":null,"abstract":"Clinical studies have long observed that neurodegenerative disorders display a range of symptoms and pathological features and, in some cases, overlap, suggesting that these diseases exist on a spectrum. Dementia with Lewy Bodies (DLB), a synucleinopathy, is a prominent example, where symptomatic similarities with tauopathy, Alzheimer’s disease, are observed. Although tau pathology has been observed in DLB, the interplay between tau and α-synuclein is poorly understood at a molecular level. Quantitative mass spectrometry analysis was used to measure protein abundance in the insoluble fraction from cortical brain tissue from pathologically diagnosed DLB subjects (n = 30) and age-matched controls (n = 29). Using tau abundance, we stratified the DLB subjects into two subgroups termed DLBTau+ (higher abundance) and DLBTau− (lower abundance). We conducted proteomic analysis to characterize and compare the cortical proteome of DLB subjects exhibiting elevated tau, as well as the molecular modifications of tau and α-synuclein to explore the dynamic between tau and α-synuclein pathology in these patients. Proteomic analyses revealed distinct global protein dysregulations in DLBTau+ and DLBTau− subjects when compared to controls. Notably, DLBTau+ patients exhibited increased levels of tau, along with ubiquitin, and APOE, indicative of cortical proteome alterations associated with elevated tau. Comparing DLBTau+ and DLBTau− groups, we observed significant upregulation of cytokine signaling and metabolic pathways in DLBTau− patients, while DLBTau+ subjects showed increases in protein ubiquitination processes and regulation of vesicle-mediated transport. Additionally, we examined the post-translational modification patterns of tau and α-synuclein. Our analysis revealed distinct phosphorylation and ubiquitination sites on α-synuclein between groups. Moreover, we observed increased modifications on tau specifically within the DLBTau+ subgroup. This molecular-level data supports the idea of neurodegenerative disease as a continuum of diseases with distinct PTM profiles DLBTau+ and DLBTau− patients in comparison to AD. These findings further emphasize the importance of identifying specific and tailored therapeutic approaches targeting the involved proteopathies in the neurodegenerative disease spectrum.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"22 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microglial CD2AP deficiency exerts protection in an Alzheimer’s disease model of amyloidosis","authors":"Lingliang Zhang, Lingling Huang, Yuhang Zhou, Jian Meng, Liang Zhang, Yunqiang Zhou, Naizhen Zheng, Tiantian Guo, Shanshan Zhao, Zijie Wang, Yuanhui Huo, Yingjun Zhao, Xiao-fen Chen, Honghua Zheng, David M. Holtzman, Yun-wu Zhang","doi":"10.1186/s13024-024-00789-7","DOIUrl":"https://doi.org/10.1186/s13024-024-00789-7","url":null,"abstract":"The CD2-associated protein (CD2AP) was initially identified in peripheral immune cells and regulates cytoskeleton and protein trafficking. Single nucleotide polymorphisms (SNPs) in the CD2AP gene have been associated with Alzheimer’s disease (AD). However, the functional role of CD2AP, especially its role in microglia during AD onset, remains elusive. CD2AP protein levels in cultured primary cells and in 5xFAD mice was studied. Microglial CD2AP-deficient mice were crossed with 5xFAD mice and the offspring were subjected to neuropathological assessment, behavioral tests, electrophysiology, RNA-seq, Golgi staining, and biochemistry analysis. Primary microglia were also isolated for assessing their uptake and morphology changes. We find that CD2AP is abundantly expressed in microglia and its levels are elevated in the brain of AD patients and the 5xFAD model mice at pathological stages. We demonstrate that CD2AP haploinsufficiency in microglia significantly attenuates cognitive and synaptic deficits, weakens the response of microglia to Aβ and the formation of disease-associated microglia (DAM), and alleviates synapse loss in 5xFAD mice. We show that CD2AP-deficient microglia exhibit compromised uptake ability. In addition, we find that CD2AP expression is positively correlated with the expression of the complement C1q that is important for synapse phagocytosis and the formation of DAM in response to Aβ deposition. Moreover, we reveal that CD2AP interacts with colony stimulating factor 1 receptor (CSF1R) and regulates CSF1R cell surface levels, which may further affect C1q expression. Our results demonstrate that CD2AP regulates microgliosis and identify a protective function of microglial CD2AP deficiency against Aβ deposition, suggesting the importance of detailed investigation of AD-associated genes in different brain cells for thoroughly understanding their exact contribution to AD.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"114 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tingxiang Yan, Michael G. Heckman, Emily C. Craver, Chia-Chen Liu, Bailey D. Rawlinson, Xue Wang, Melissa E. Murray, Dennis W. Dickson, Nilufer Ertekin-Taner, Zhenkun Lou, Guojun Bu, Wolfdieter Springer, Fabienne C. Fiesel
{"title":"The UFMylation pathway is impaired in Alzheimer’s disease","authors":"Tingxiang Yan, Michael G. Heckman, Emily C. Craver, Chia-Chen Liu, Bailey D. Rawlinson, Xue Wang, Melissa E. Murray, Dennis W. Dickson, Nilufer Ertekin-Taner, Zhenkun Lou, Guojun Bu, Wolfdieter Springer, Fabienne C. Fiesel","doi":"10.1186/s13024-024-00784-y","DOIUrl":"https://doi.org/10.1186/s13024-024-00784-y","url":null,"abstract":"Alzheimer’s disease (AD) is characterized by the presence of neurofibrillary tangles made of hyperphosphorylated tau and senile plaques composed of beta-amyloid. These pathognomonic deposits have been implicated in the pathogenesis, although the molecular mechanisms and consequences remain undetermined. UFM1 is an important, but understudied ubiquitin-like protein that is covalently attached to substrates. UFMylation has recently been identified as major modifier of tau aggregation upon seeding in experimental models. However, potential alterations of the UFM1 pathway in human AD brain have not been investigated yet. Here we used frontal and temporal cortex samples from individuals with or without AD to measure the protein levels of the UFMylation pathway in human brain. We used multivariable regression analyses followed by Bonferroni correction for multiple testing to analyze associations of the UFMylation pathway with neuropathological characteristics, primary biochemical measurements of tau and additional biochemical markers from the same cases. We further studied associations of the UFMylation cascade with cellular stress pathways using Spearman correlations with bulk RNAseq expression data and functionally validated these interactions using gene-edited neurons that were generated by CRISPR-Cas9. Compared to controls, human AD brain had increased protein levels of UFM1. Our data further indicates that this increase mainly reflects conjugated UFM1 indicating hyperUFMylation in AD. UFMylation was strongly correlated with pathological tau in both AD-affected brain regions. In addition, we found that the levels of conjugated UFM1 were negatively correlated with soluble levels of the deUFMylation enzyme UFSP2. Functional analysis of UFM1 and/or UFSP2 knockout neurons revealed that the DNA damage response as well as the unfolded protein response are perturbed by changes in neuronal UFM1 signaling. There are marked changes in the UFMylation pathway in human AD brain. These changes are significantly associated with pathological tau, supporting the idea that the UFMylation cascade might indeed act as a modifier of tau pathology in human brain. Our study further nominates UFSP2 as an attractive target to reduce the hyperUFMylation observed in AD brain but also underscores the critical need to identify risks and benefits of manipulating the UFMylation pathway as potential therapeutic avenue for AD.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"12 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mystery of gamma wave stimulation in brain disorders","authors":"Qianting Deng, Chongyun Wu, Emily Parker, Jing Zhu, Timon Cheng-Yi Liu, Rui Duan, Luodan Yang","doi":"10.1186/s13024-024-00785-x","DOIUrl":"https://doi.org/10.1186/s13024-024-00785-x","url":null,"abstract":"Neuronal oscillations refer to rhythmic and periodic fluctuations of electrical activity in the central nervous system that arise from the cellular properties of diverse neuronal populations and their interactions. Specifically, gamma oscillations play a crucial role in governing the connectivity between distinct brain regions, which are essential in perception, motor control, memory, and emotions. In this context, we recapitulate various current stimulation methods to induce gamma entrainment. These methods include sensory stimulation, optogenetic modulation, photobiomodulation, and transcranial electrical or magnetic stimulation. Simultaneously, we explore the association between abnormal gamma oscillations and central nervous system disorders such as Alzheimer’s disease, Parkinson’s disease, stroke, schizophrenia, and autism spectrum disorders. Evidence suggests that gamma entrainment-inducing stimulation methods offer notable neuroprotection, although somewhat controversial. This review comprehensively discusses the functional role of gamma oscillations in higher-order brain activities from both physiological and pathological perspectives, emphasizing gamma entrainment as a potential therapeutic approach for neuropsychiatric disorders. Additionally, we discuss future opportunities and challenges in implementing such strategies.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"64 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jace Jones-Tabah, Kathy He, Nathan Karpilovsky, Konstantin Senkevich, Ghislaine Deyab, Isabella Pietrantonio, Thomas Goiran, Yuting Cousineau, Daria Nikanorova, Taylor Goldsmith, Esther del Cid Pellitero, Carol X.-Q. Chen, Wen Luo, Zhipeng You, Narges Abdian, Jamil Ahmad, Jennifer A. Ruskey, Farnaz Asayesh, Dan Spiegelman, Stanley Fahn, Cheryl Waters, Oury Monchi, Yves Dauvilliers, Nicolas Dupré, Irina Miliukhina, Alla Timofeeva, Anton Emelyanov, Sofya Pchelina, Lior Greenbaum, Sharon Hassin-Baer, Roy N. Alcalay, Austen Milnerwood, Thomas M. Durcan, Ziv Gan-Or, Edward A. Fon
{"title":"Correction: The Parkinson’s disease risk gene cathepsin B promotes fibrillar alpha-synuclein clearance, lysosomal function and glucocerebrosidase activity in dopaminergic neurons","authors":"Jace Jones-Tabah, Kathy He, Nathan Karpilovsky, Konstantin Senkevich, Ghislaine Deyab, Isabella Pietrantonio, Thomas Goiran, Yuting Cousineau, Daria Nikanorova, Taylor Goldsmith, Esther del Cid Pellitero, Carol X.-Q. Chen, Wen Luo, Zhipeng You, Narges Abdian, Jamil Ahmad, Jennifer A. Ruskey, Farnaz Asayesh, Dan Spiegelman, Stanley Fahn, Cheryl Waters, Oury Monchi, Yves Dauvilliers, Nicolas Dupré, Irina Miliukhina, Alla Timofeeva, Anton Emelyanov, Sofya Pchelina, Lior Greenbaum, Sharon Hassin-Baer, Roy N. Alcalay, Austen Milnerwood, Thomas M. Durcan, Ziv Gan-Or, Edward A. Fon","doi":"10.1186/s13024-024-00791-z","DOIUrl":"https://doi.org/10.1186/s13024-024-00791-z","url":null,"abstract":"<p><b>Correction</b><b>: </b><b>Mol Neurodegeneration 19, 88 (2024)</b></p><p><b>https://doi.org/10.1186/s13024-024-00779-9</b></p><br/><p>The authors wish to note the Grant ID, MFFF – 007905 relating to the mentioned grants to ZGO and EAF from the Michael J. Fox Foundation which was mistakenly omitted from the original article [1].</p><p>The authors also wish to note that Lior Greenbaum is only affiliated to affiliation #14 (Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel).</p><ol data-track-component=\"outbound reference\" data-track-context=\"references section\"><li data-counter=\"1.\"><p>Jones-Tabah J, He K, Karpilovsky N, et al. The Parkinson’s disease risk gene cathepsin B promotes fibrillar alpha-synuclein clearance, lysosomal function and glucocerebrosidase activity in dopaminergic neurons. Mol Neurodegeneration. 2024;19:88. https://doi.org/10.1186/s13024-024-00779-9.</p><p>Article CAS Google Scholar </p></li></ol><p>Download references<svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></p><h3>Authors and Affiliations</h3><ol><li><p>Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada</p><p>Jace Jones-Tabah, Kathy He, Nathan Karpilovsky, Konstantin Senkevich, Ghislaine Deyab, Isabella Pietrantonio, Thomas Goiran, Esther del Cid Pellitero, Jamil Ahmad, Jennifer A. Ruskey, Farnaz Asayesh, Dan Spiegelman, Ziv Gan-Or & Edward A. Fon</p></li><li><p>Department of Neurology and Neurosurgery, McGill University, Montréal, Canada</p><p>Jace Jones-Tabah, Konstantin Senkevich, Yuting Cousineau, Jamil Ahmad, Jennifer A. Ruskey, Oury Monchi, Austen Milnerwood & Edward A. Fon</p></li><li><p>Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada</p><p>Taylor Goldsmith, Carol X.-Q. Chen, Wen Luo, Zhipeng You, Narges Abdian & Thomas M. Durcan</p></li><li><p>Research Department, Bioinformatics Institute, Saint-Petersburg, Russia</p><p>Daria Nikanorova</p></li><li><p>Department of Human Genetics, McGill University, Montréal, Canada</p><p>Farnaz Asayesh & Ziv Gan-Or</p></li><li><p>Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA</p><p>Stanley Fahn, Cheryl Waters & Roy N. Alcalay</p></li><li><p>Département de Radiologie, Radio-Oncologie Et Médecine Nucléaire, Université de Montréal, Montréal, QC, Canada</p><p>Oury Monchi</p></li><li><p>Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada</p><p>Oury Monchi</p></li><li><p>Sleep Unit, Department of Neurology, National Reference Center for Narcolepsy, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France</p><p>Yves Dauvilliers<","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"11 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suji Hong, Seung-Hyun Baek, Mitchell K. P. Lai, Thiruma V. Arumugam, Dong-Gyu Jo
{"title":"Aging-associated sensory decline and Alzheimer’s disease","authors":"Suji Hong, Seung-Hyun Baek, Mitchell K. P. Lai, Thiruma V. Arumugam, Dong-Gyu Jo","doi":"10.1186/s13024-024-00776-y","DOIUrl":"https://doi.org/10.1186/s13024-024-00776-y","url":null,"abstract":"Multisensory decline is common as people age, and aging is the primary risk of Alzheimer’s Disease (AD). Recent studies have begun to shed light on the possibility that age-related sensory decline could accelerate AD pathogenesis, or be a prodromal indicator of AD. Sensory impairments, specifically in taste and smell, often emerge before cognitive symptoms in AD, indicating their potential as early biomarkers. Olfactory dysfunction has been frequently associated with AD and may offer valuable insights into early detection. Hearing impairment is significantly associated with AD, but its causal impact on AD progression remains unclear. The review also discusses visual and tactile deficits in AD, including retinal thinning and changes in tactile perception, highlighting their links to disease progression. Focusing on molecular mechanisms, the review explores the roles of amyloid-β (Aβ) accumulation and tau protein pathology in sensory decline and their bidirectional relationship with AD. In summary, the evidence presented conclusively supports advocating for an integrated approach to understanding AD and sensory decline, to enhance early detection, implementing preventive strategies, and developing therapeutic interventions for AD. This approach underscores the significance of sensory health in addressing neurodegenerative diseases, particularly AD.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"82 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142763077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zerui Wang, Ling Wu, Maria Gerasimenko, Tricia Gilliland, Zahid Syed Ali Shah, Evalynn Lomax, Yirong Yang, Steven A Gunzler, Vincenzo Donadio, Rocco Liguori, Bin Xu, Wen-Quan Zou
{"title":"Seeding activity of skin misfolded tau as a biomarker for tauopathies.","authors":"Zerui Wang, Ling Wu, Maria Gerasimenko, Tricia Gilliland, Zahid Syed Ali Shah, Evalynn Lomax, Yirong Yang, Steven A Gunzler, Vincenzo Donadio, Rocco Liguori, Bin Xu, Wen-Quan Zou","doi":"10.1186/s13024-024-00781-1","DOIUrl":"10.1186/s13024-024-00781-1","url":null,"abstract":"<p><strong>Background: </strong>Tauopathies are a group of age-related neurodegenerative diseases characterized by the accumulation of pathologically hyperphosphorylated tau protein in the brain, leading to prion-like aggregation and propagation. They include Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD). Currently, reliable diagnostic biomarkers that directly reflect the capability of propagation and spreading of misfolded tau aggregates in peripheral tissues and body fluids are lacking.</p><p><strong>Methods: </strong>We utilized the seed-amplification assay (SAA) employing ultrasensitive real-time quaking-induced conversion (RT-QuIC) to assess the prion-like seeding activity of pathological tau in the skin of cadavers with neuropathologically confirmed tauopathies, including AD, PSP, CBD, and PiD, compared to normal controls.</p><p><strong>Results: </strong>We found that the skin tau-SAA demonstrated a significantly higher sensitivity (75-80%) and specificity (95-100%) for detecting tauopathy, depending on the tau substrates used. Moreover, the increased tau-seeding activity was also observed in biopsy skin samples from living AD and PSP patients examined. Analysis of the end products of skin-tau SAA confirmed that the increased seeding activity was accompanied by the formation of tau aggregates with different physicochemical properties related to two different tau substrates used.</p><p><strong>Conclusions: </strong>Overall, our study provides proof-of-concept that the skin tau-SAA can differentiate tauopathies from normal controls, suggesting that the seeding activity of misfolded tau in the skin could serve as a diagnostic biomarker for tauopathies.</p>","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"19 1","pages":"92"},"PeriodicalIF":14.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606191/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142750817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haitao Tu, Xin Yi Yeo, Zhi-Wei Zhang, Wei Zhou, Jayne Yi Tan, Li Chi, Sook-Yoong Chia, Zhihong Li, Aik Yong Sim, Brijesh Kumar Singh, Dongrui Ma, Zhidong Zhou, Isabelle Bonne, Shuo-Chien Ling, Adeline S L Ng, Sangyong Jung, Eng-King Tan, Li Zeng
{"title":"NOTCH2NLC GGC intermediate repeat with serine induces hypermyelination and early Parkinson's disease-like phenotypes in mice.","authors":"Haitao Tu, Xin Yi Yeo, Zhi-Wei Zhang, Wei Zhou, Jayne Yi Tan, Li Chi, Sook-Yoong Chia, Zhihong Li, Aik Yong Sim, Brijesh Kumar Singh, Dongrui Ma, Zhidong Zhou, Isabelle Bonne, Shuo-Chien Ling, Adeline S L Ng, Sangyong Jung, Eng-King Tan, Li Zeng","doi":"10.1186/s13024-024-00780-2","DOIUrl":"10.1186/s13024-024-00780-2","url":null,"abstract":"<p><strong>Background: </strong>The expansion of GGC repeats (typically exceeding 60 repeats) in the 5' untranslated region (UTR) of the NOTCH2NLC gene (N2C) is linked to N2C-related repeat expansion disorders (NREDs), such as neuronal intranuclear inclusion disease (NIID), frontotemporal dementia (FTD), essential tremor (ET), and Parkinson's disease (PD). These disorders share common clinical manifestations, including parkinsonism, dementia, seizures, and muscle weakness. Intermediate repeat sizes ranging from 40 to 60 GGC repeats, particularly those with AGC-encoded serine insertions, have been reported to be associated with PD; however, the functional implications of these intermediate repeats with serine insertion remain unexplored.</p><p><strong>Methods: </strong>Here, we utilized cellular models harbouring different sizes of N2C variant 2 (N2C2) GGC repeat expansion and CRISPR-Cas9 engineered transgenic mouse models carrying N2C2 GGC intermediate repeats with and without serine insertion to elucidate the underlying pathophysiology associated with N2C intermediate repeat with serine insertion in NREDs.</p><p><strong>Results: </strong>Our findings revealed that the N2C2 GGC intermediate repeat with serine insertion (32G13S) led to mitochondrial dysfunction and cell death in vitro. The neurotoxicity was influenced by the length of the repeat and was exacerbated by the presence of the serine insertion. In 12-month-old transgenic mice, 32G13S intensified intranuclear aggregation and exhibited early PD-like characteristics, including the formation of α-synuclein fibers in the midbrain and the loss of tyrosine hydroxylase (TH)-positive neurons in both the cortex and striatum. Additionally, 32G13S induced neuronal hyperexcitability and caused locomotor behavioural impairments. Transcriptomic analysis of the mouse cortex indicated dysregulation in calcium signaling and MAPK signaling pathways, both of which are critical for mitochondrial function. Notably, genes associated with myelin sheath components, including MBP and MOG, were dysregulated in the 32G13S mouse. Further investigations using immunostaining and transmission electron microscopy revealed that the N2C intermediate repeat with serine induced mitochondrial dysfunction-related hypermyelination in the cortex.</p><p><strong>Conclusions: </strong>Our in vitro and in vivo investigations provide the first evidence that the N2C-GGC intermediate repeat with serine promotes intranuclear aggregation of N2C, leading to mitochondrial dysfunction-associated hypermyelination and neuronal hyperexcitability. These changes contribute to motor deficits in early PD-like neurodegeneration in NREDs.</p>","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"19 1","pages":"91"},"PeriodicalIF":14.9,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603791/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142750792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin E. Clarke, Oliver J. Ziff, Giulia Tyzack, Marija Petrić Howe, Yiran Wang, Pierre Klein, Claudia A. Smith, Cameron A. Hall, Adel Helmy, Michael Howell, Gavin Kelly, Rickie Patani
{"title":"Human VCP mutant ALS/FTD microglia display immune and lysosomal phenotypes independently of GPNMB","authors":"Benjamin E. Clarke, Oliver J. Ziff, Giulia Tyzack, Marija Petrić Howe, Yiran Wang, Pierre Klein, Claudia A. Smith, Cameron A. Hall, Adel Helmy, Michael Howell, Gavin Kelly, Rickie Patani","doi":"10.1186/s13024-024-00773-1","DOIUrl":"https://doi.org/10.1186/s13024-024-00773-1","url":null,"abstract":"Microglia play crucial roles in maintaining neuronal homeostasis but have been implicated in contributing to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the role of microglia in ALS/FTD remains incompletely understood. Here, we generated highly enriched cultures of VCP mutant microglia derived from human induced pluripotent stem cells (hiPSCs) to investigate their cell autonomous and non-cell autonomous roles in ALS pathogenesis. We used RNA-sequencing, proteomics and functional assays to study hiPSC derived VCP mutant microglia and their effects on hiPSC derived motor neurons and astrocytes. Transcriptomic, proteomic and functional analyses revealed immune and lysosomal dysfunction in VCP mutant microglia. Stimulating healthy microglia with the inflammatory inducer lipopolysaccharide (LPS) showed partial overlap with VCP mutant microglia in their reactive transformation. LPS-stimulated VCP mutant microglia displayed differential activation of inflammatory pathways compared with LPS-stimulated healthy microglia. Conserved gene expression changes were identified between VCP mutant microglia, SOD1 mutant mice microglia, and postmortem ALS spinal cord microglial signatures, including increased expression of the transmembrane glycoprotein GPNMB. While knockdown of GPNMB affected inflammatory and phagocytosis processes in microglia, this was not sufficient to ameliorate cell autonomous phenotypes in VCP mutant microglia. Secreted factors from VCP mutant microglia were sufficient to activate the JAK-STAT pathway in hiPSC derived motor neurons and astrocytes. VCP mutant microglia undergo cell autonomous reactive transformation involving immune and lysosomal dysfunction that partially recapitulate key phenotypes of microglia from other ALS models and post mortem tissue. These phenotypes occur independently of GPNMB. Additionally, VCP mutant microglia elicit non cell autonomous responses in motor neurons and astrocytes involving the JAK-STAT pathway.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"8 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142713202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jace Jones-Tabah, Kathy He, Nathan Karpilovsky, Konstantin Senkevich, Ghislaine Deyab, Isabella Pietrantonio, Thomas Goiran, Yuting Cousineau, Daria Nikanorova, Taylor Goldsmith, Esther del Cid Pellitero, Carol X.-Q. Chen, Wen Luo, Zhipeng You, Narges Abdian, Jamil Ahmad, Jennifer A. Ruskey, Farnaz Asayesh, Dan Spiegelman, Stanley Fahn, Cheryl Waters, Oury Monchi, Yves Dauvilliers, Nicolas Dupré, Irina Miliukhina, Alla Timofeeva, Anton Emelyanov, Sofya Pchelina, Lior Greenbaum, Sharon Hassin-Baer, Roy N. Alcalay, Austen Milnerwood, Thomas M. Durcan, Ziv Gan-Or, Edward A. Fon
{"title":"The Parkinson’s disease risk gene cathepsin B promotes fibrillar alpha-synuclein clearance, lysosomal function and glucocerebrosidase activity in dopaminergic neurons","authors":"Jace Jones-Tabah, Kathy He, Nathan Karpilovsky, Konstantin Senkevich, Ghislaine Deyab, Isabella Pietrantonio, Thomas Goiran, Yuting Cousineau, Daria Nikanorova, Taylor Goldsmith, Esther del Cid Pellitero, Carol X.-Q. Chen, Wen Luo, Zhipeng You, Narges Abdian, Jamil Ahmad, Jennifer A. Ruskey, Farnaz Asayesh, Dan Spiegelman, Stanley Fahn, Cheryl Waters, Oury Monchi, Yves Dauvilliers, Nicolas Dupré, Irina Miliukhina, Alla Timofeeva, Anton Emelyanov, Sofya Pchelina, Lior Greenbaum, Sharon Hassin-Baer, Roy N. Alcalay, Austen Milnerwood, Thomas M. Durcan, Ziv Gan-Or, Edward A. Fon","doi":"10.1186/s13024-024-00779-9","DOIUrl":"https://doi.org/10.1186/s13024-024-00779-9","url":null,"abstract":"Variants in the CTSB gene encoding the lysosomal hydrolase cathepsin B (catB) are associated with increased risk of Parkinson’s disease (PD). However, neither the specific CTSB variants driving these associations nor the functional pathways that link catB to PD pathogenesis have been characterized. CatB activity contributes to lysosomal protein degradation and regulates signaling processes involved in autophagy and lysosome biogenesis. Previous in vitro studies have found that catB can cleave monomeric and fibrillar alpha-synuclein, a key protein involved in the pathogenesis of PD that accumulates in the brains of PD patients. However, truncated synuclein isoforms generated by catB cleavage have an increased propensity to aggregate. Thus, catB activity could potentially contribute to lysosomal degradation and clearance of pathogenic alpha synuclein from the cell, but also has the potential of enhancing synuclein pathology by generating aggregation-prone truncations. Therefore, the mechanisms linking catB to PD pathophysiology remain to be clarified. Here, we conducted genetic analyses of the association between common and rare CTSB variants and risk of PD. We then used genetic and pharmacological approaches to manipulate catB expression and function in cell lines, induced pluripotent stem cell-derived dopaminergic neurons and midbrain organoids and assessed lysosomal activity and the handling of aggregated synuclein fibrils. We find that catB inhibition impairs autophagy, reduces glucocerebrosidase (encoded by GBA1) activity, and leads to an accumulation of lysosomal content. In cell lines, reduction of CTSB gene expression impairs the degradation of pre-formed alpha-synuclein fibrils, whereas CTSB gene activation enhances fibril clearance. In midbrain organoids and dopaminergic neurons treated with alpha-synuclein fibrils, catB inhibition potentiates the formation of inclusions which stain positively for phosphorylated alpha-synuclein. These results indicate that the reduction of catB function negatively impacts lysosomal pathways associated with PD pathogenesis, while conversely catB activation could promote the clearance of pathogenic alpha-synuclein.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"183 1","pages":""},"PeriodicalIF":15.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}