Molecular Cancer Therapeutics最新文献

筛选
英文 中文
SC134-TCB Targeting Fucosyl-GM1, a T Cell-Engaging Antibody with Potent Antitumor Activity in Preclinical Small Cell Lung Cancer Models. SC134-TCB 靶向岩藻糖基-GM1 的 T 细胞参与抗体,在临床前小细胞肺癌模型中具有强大的抗肿瘤活性。
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-11-04 DOI: 10.1158/1535-7163.MCT-24-0187
Foram Dave, Poonam Vaghela, Bryony Heath, Zuzana Dunster, Elena Dubinina, Dhruma Thakker, Katie Mann, Joe Chadwick, Gaëlle Cane, Bubacarr G Kaira, Omar J Mohammed, Ruhul Choudhury, Samantha Paston, Tina Parsons, Mireille Vankemmelbeke, Lindy Durrant
{"title":"SC134-TCB Targeting Fucosyl-GM1, a T Cell-Engaging Antibody with Potent Antitumor Activity in Preclinical Small Cell Lung Cancer Models.","authors":"Foram Dave, Poonam Vaghela, Bryony Heath, Zuzana Dunster, Elena Dubinina, Dhruma Thakker, Katie Mann, Joe Chadwick, Gaëlle Cane, Bubacarr G Kaira, Omar J Mohammed, Ruhul Choudhury, Samantha Paston, Tina Parsons, Mireille Vankemmelbeke, Lindy Durrant","doi":"10.1158/1535-7163.MCT-24-0187","DOIUrl":"10.1158/1535-7163.MCT-24-0187","url":null,"abstract":"<p><p>Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options. Fucosyl-GM1 (FucGM1) is a glycolipid overexpressed in the majority of SCLC tumors but virtually absent from normal healthy tissues. In this study, we validate a FucGM1-targeting T cell-redirecting bispecific (TCB) antibody for the treatment of SCLC. More than 80% of patient-derived xenograft tissues of SCLC expressed FucGM1, whereas only three normal human tissues: pituitary, thymus, and skin expressed low and focal FucGM1. A FucGM1-targeting TCB (SC134-TCB), based on the Fc-silenced humanized SC134 antibody, exhibited nanomolar efficiency in FucGM1 glycolipid and SCLC cell surface binding. SC134-TCB showed potent ex vivo killing of SCLC cell lines with donor-dependent EC50 ranging from 7.2 pmol/L up to 211.0 pmol/L, effectively activating T cells, with picomolar efficiency, coinciding with target-dependent cytokine production such as IFNγ, IL2, and TNFα and robust proliferation of both CD4 and CD8 T cells. The ex vivo SC134-TCB tumor controlling activity translated into an effective in vivo anti-DMS79 tumor therapy, resulting in 100% tumor-free survival in a human peripheral blood mononuclear cell admixed setting and 40% overall survival (55% tumor growth inhibition) with systemically administered human peripheral blood mononuclear cells. Combination treatment with atezolizumab further enhanced survival and tumor growth inhibition (up to 73%). A 10-fold SC134-TCB dose reduction maintained the strong in vivo antitumor impact, translating into 70% overall survival (P < 0.0001). Whole-blood incubation with SC134-TCB, as well as healthy human primary cells analysis, revealed no target-independent cytokine production. SC134-TCB presents an attractive candidate to deliver an effective immunotherapy treatment option for patients with SCLC.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1626-1638"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NAD+ Metabolic Enzyme Inhibitor as Radiosensitizer for Malignant Meningioma and its Modulation of P53 Expression. NAD+ 代谢酶抑制剂作为恶性脑膜瘤的放射增敏剂及其对 P53 表达的调节。
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-11-04 DOI: 10.1158/1535-7163.MCT-23-0632
Yifan Lv, Yuxuan Deng, Jie Feng, Jinqiu Liu, Mingxu Yang, Zhuonan Pu, Shaodong Zhang, Zhen Wu, Nan Ji, Deric M Park, Shuyu Hao
{"title":"NAD+ Metabolic Enzyme Inhibitor as Radiosensitizer for Malignant Meningioma and its Modulation of P53 Expression.","authors":"Yifan Lv, Yuxuan Deng, Jie Feng, Jinqiu Liu, Mingxu Yang, Zhuonan Pu, Shaodong Zhang, Zhen Wu, Nan Ji, Deric M Park, Shuyu Hao","doi":"10.1158/1535-7163.MCT-23-0632","DOIUrl":"10.1158/1535-7163.MCT-23-0632","url":null,"abstract":"<p><p>Surgical resection followed by radiotherapy (RT) is recommended for malignant meningioma, but poor outcome is unavoidable. To improve the efficacy of RT in malignant meningioma, a targeted radiosensitizer can be added. Nicotinamide phosphoribosyltransferase (NAMPT), highly expressed in high-grade meningiomas, may play a role in determining the radioresponse. Herein, we evaluated the impact of NAMPT inhibition on radiosensitivity in malignant meningioma in vivo and in vitro. IOMM-Lee and TTMM705 cells were treated with NAMPT inhibition (FK866 or shRNA NAMPT) before irradiation. The subsequent clonogenic assay demonstrated significantly increased radiosensitivity. Combination treatment with FK866 and irradiation significantly increased the number of G2/M-phase cells, percentage of apoptotic cells, and γ-H2A.X level compared with FK866 or RT alone. We examined the effect of NAMPT inhibition on NMI and p53 expression in IOMM-Lee and TTMM705 cells. NAMPT inhibition by FK866 and shRNA treatment increased NMI, p53, CDKN1A and BAX expression. Additionally, we assessed the efficacy of FK866/RT combination treatment in vivo. The combination treatment exhibited increased antitumor efficacy compared with either treatment alone. The Ki67 level was significantly lower, and the p53 and γ-H2A.X levels were significantly higher in the combination treatment group than in the other three groups. In conclusion, these results indicate that FK866 improves radiosensitivity in malignant meningioma, an effect that may be attributed to the increase in p53 expression.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1586-1596"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Tumor-Agnostic Molecular Targets. 新出现的肿瘤诊断分子靶标。
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-11-04 DOI: 10.1158/1535-7163.MCT-23-0725
Dedipya Bhamidipati, Alison M Schram
{"title":"Emerging Tumor-Agnostic Molecular Targets.","authors":"Dedipya Bhamidipati, Alison M Schram","doi":"10.1158/1535-7163.MCT-23-0725","DOIUrl":"10.1158/1535-7163.MCT-23-0725","url":null,"abstract":"<p><p>Advances in tumor molecular profiling have uncovered shared genomic and proteomic alterations across tumor types that can be exploited therapeutically. A biomarker-driven, disease-agnostic approach to oncology drug development can maximize the reach of novel therapeutics. To date, eight drug-biomarker pairs have been approved for the treatment of patients with advanced solid tumors with specific molecular profiles. Emerging biomarkers with the potential for clinical actionability across tumor types include gene fusions involving NRG1, FGFR1/2/3, BRAF, and ALK and mutations in TP53 Y220C, KRAS G12C, FGFR2/3, and BRAF non-V600 (class II). We explore the growing evidence for clinical actionability of these biomarkers in patients with advanced solid tumors.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1544-1554"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A DXd/TLR7-Agonist Dual-Conjugate Anti-HER2 ADC Exerts Robust Antitumor Activity Through Tumor Cell Killing and Immune Activation. DXd/TLR7-agonist 双结合抗 HER2 ADC 通过杀伤肿瘤细胞和激活免疫发挥了强大的抗肿瘤活性。
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-11-04 DOI: 10.1158/1535-7163.MCT-24-0078
Hangtian Yue, Hui Xu, Lanping Ma, Xiyuan Li, Biyu Yang, Xiyuan Wang, Qingzhong Zeng, Han Li, Deqiang Zhang, Meiyu Geng, Tao Meng, Zuoquan Xie
{"title":"A DXd/TLR7-Agonist Dual-Conjugate Anti-HER2 ADC Exerts Robust Antitumor Activity Through Tumor Cell Killing and Immune Activation.","authors":"Hangtian Yue, Hui Xu, Lanping Ma, Xiyuan Li, Biyu Yang, Xiyuan Wang, Qingzhong Zeng, Han Li, Deqiang Zhang, Meiyu Geng, Tao Meng, Zuoquan Xie","doi":"10.1158/1535-7163.MCT-24-0078","DOIUrl":"10.1158/1535-7163.MCT-24-0078","url":null,"abstract":"<p><p>The emergence of trastuzumab deruxtecan (T-DXd), a new-generation antibody-drug conjugate (ADC), has profoundly altered the therapeutic paradigm for HER2-positive solid tumors, demonstrating remarkable clinical benefits. However, the combined outcomes of T-DXd with immunotherapy agents remain ambiguous. In this study, we introduce Tras-DXd-MTL1, an innovative HER2 targeting ADC that integrates the topoisomerase inhibitor DXd and a toll like receptor 7 (TLR7) agonist MTT5, linked to trastuzumab via a GGFG tetrapeptide linker. Mechanistically, Tras-DXd-MTL1 retains the DNA-damaging and cell-killing properties of topoisomerase inhibitors while simultaneously enhancing the immune response within the tumor microenvironment. This is achieved by promoting immune cell infiltration and activating dendritic cells and CD8+T cells via MTT5. In vivo evaluation of Tras-DXd-MTL1's antitumor potency revealed a notably superior performance compared with the T-DXd (Tras-DXd) or Tras-MTL1 in immunocompetent mice with trastuzumab-resistant EMT6-HER2 tumor and immunodeficient mice with JIMT-1 tumor. This improved efficacy is primarily attributed to its dual functions of immune stimulation and cytotoxicity. Our findings highlight the potential of incorporating immunostimulatory agents into ADC design to potentiate antitumor effects and establish durable immune memory, thereby reducing tumor recurrence risks. Therefore, our study offers a novel strategy for the design of immune-activating ADCs and provides a potential approach for targeting solid tumors with different levels of HER2 expression.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1639-1651"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Inhibition of Central Carbon Metabolism Pathways by Rac and CDC42 inhibitor MBQ167 and Paclitaxel. Rac和Cdc42抑制剂MBQ-167与紫杉醇对中枢碳代谢途径的新抑制作用。
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-11-04 DOI: 10.1158/1535-7163.MCT-23-0803
Ailed M Cruz-Collazo, Olga Katsara, Nilmary Grafals-Ruiz, Jessica Colon Gonzalez, Stephanie Dorta-Estremera, Victor P Carlo, Nataliya Chorna, Robert J Schneider, Suranganie Dharmawardhane
{"title":"Novel Inhibition of Central Carbon Metabolism Pathways by Rac and CDC42 inhibitor MBQ167 and Paclitaxel.","authors":"Ailed M Cruz-Collazo, Olga Katsara, Nilmary Grafals-Ruiz, Jessica Colon Gonzalez, Stephanie Dorta-Estremera, Victor P Carlo, Nataliya Chorna, Robert J Schneider, Suranganie Dharmawardhane","doi":"10.1158/1535-7163.MCT-23-0803","DOIUrl":"10.1158/1535-7163.MCT-23-0803","url":null,"abstract":"<p><p>Triple negative breast cancer (TNBC) represents a therapeutic challenge in which standard chemotherapy is limited to paclitaxel. MBQ167, a clinical stage small molecule inhibitor that targets Rac and Cdc42, inhibits tumor growth and metastasis in mouse models of TNBC. Herein, we investigated the efficacy of MBQ167 in combination with paclitaxel in TNBC preclinical models, as a prelude to safety trials of this combination in patients with advanced breast cancer. Individual MBQ167 or combination therapy with paclitaxel was more effective at reducing TNBC cell viability and increasing apoptosis compared with paclitaxel alone. In orthotopic mouse models of human TNBC (MDA-MB231 and MDA-MB468), individual MBQ167, paclitaxel, or the combination reduced mammary tumor growth with similar efficacy, with no apparent liver toxicity. However, paclitaxel single agent treatment significantly increased lung metastasis, whereas MBQ167, single or combined, reduced lung metastasis. In the syngeneic 4T1/BALB/c model, combined MBQ167 and paclitaxel decreased established lung metastases by ∼80%. To determine the molecular basis for the improved efficacy of the combined treatment on metastasis, 4T1 tumor extracts from BALB/c mice treated with MBQ167, paclitaxel, or the combination were subjected to transcriptomic analysis. Gene set enrichment identified specific downregulation of central carbon metabolic pathways by the combination of MBQ167 and paclitaxel but not individual compounds. Biochemical validation, by immunoblotting and metabolic Seahorse analysis, shows that combined MBQ167 and paclitaxel reduces glycolysis. This study provides a strong rationale for the clinical testing of MBQ167 in combination with paclitaxel as a potential therapeutic for TNBC and identifies a unique mechanism of action.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1613-1625"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534544/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Phage Display-Derived Peptide-Based Dual-Modality Imaging Probe for Bladder Cancer Diagnosis and Resection Postinstillation: A Preclinical Study. 更正:噬菌体展示衍生肽基双模态成像探针用于膀胱癌诊断和梗阻后切除术:临床前研究。
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-11-04 DOI: 10.1158/1535-7163.MCT-24-0855
Li Peng, Wenting Shang, Pengyu Guo, Kunshan He, Hongzhi Wang, Ziyu Han, Hongmei Jiang, Jie Tian, Kun Wang, Wanhai Xu
{"title":"Correction: Phage Display-Derived Peptide-Based Dual-Modality Imaging Probe for Bladder Cancer Diagnosis and Resection Postinstillation: A Preclinical Study.","authors":"Li Peng, Wenting Shang, Pengyu Guo, Kunshan He, Hongzhi Wang, Ziyu Han, Hongmei Jiang, Jie Tian, Kun Wang, Wanhai Xu","doi":"10.1158/1535-7163.MCT-24-0855","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0855","url":null,"abstract":"","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":"23 11","pages":"1681"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preclinical characterization of XB002, an anti-tissue factor antibody-drug conjugate for the treatment of solid tumors. 用于治疗实体瘤的抗组织因子抗体药物共轭物 XB002 的临床前特征。
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-11-04 DOI: 10.1158/1535-7163.MCT-24-0002
Seema Kantak, Raffaella Faggioni, Allen G Cai, Maryam M Bhatti, Jing Li, Inna Vainshtein, Jackie Cheng, Brian A Mendelsohn, Jacques Gaudreault, Thi-Sau Migone, Jan-Willem Theunissen
{"title":"Preclinical characterization of XB002, an anti-tissue factor antibody-drug conjugate for the treatment of solid tumors.","authors":"Seema Kantak, Raffaella Faggioni, Allen G Cai, Maryam M Bhatti, Jing Li, Inna Vainshtein, Jackie Cheng, Brian A Mendelsohn, Jacques Gaudreault, Thi-Sau Migone, Jan-Willem Theunissen","doi":"10.1158/1535-7163.MCT-24-0002","DOIUrl":"https://doi.org/10.1158/1535-7163.MCT-24-0002","url":null,"abstract":"<p><p>Tissue factor (TF) is overexpressed in various cancers, where its expression is generally associated with poor disease outcomes. XB002 is an anti-TF antibody-drug conjugate designed to deliver a cytotoxic payload to TF-expressing tumors while minimizing adverse events related to disruption of TF function, notably bleeding. XB002 is composed of a zovodotin linker-payload conjugated to a monoclonal antibody (clone 25A3) that binds to TF with high affinity (KD = 0.86 nM). In vitro coagulation studies indicated that 25A3 did not interfere with the clotting cascade; at a 100 nM concentration, 25A3 had no effect on activation of coagulation factor X or thrombin generation. XB002 was internalized in TF-expressing cancer cell lines and displayed potent cytotoxic activity at sub-nanomolar concentrations. When evaluated in the HPAF-II xenograft model, XB002 (1.5 mg/kg, IV) given once weekly for 2 weeks induced complete regression with no tumor growth even at 5 weeks after the second dose. In murine patient-derived xenograft models, a single dose of XB002 (10 mg/kg, IV) inhibited tumor growth across multiple cancer models including bladder, cervical, gastric, head and neck squamous cell carcinoma (HNSCC), and non-small cell lung cancer. Further, complete tumor regression was observed in both the cervical and HNSCC models by 30 days post-treatment. In non-human primate models, XB002 showed exposure in the desired range and no evidence of bleeding or neutropenia. Taken together, these data demonstrate potential anti-tumor activity across a spectrum of oncology indications and strongly support its clinical development.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction: Combining PARP-1 Inhibition and Radiation in Ewing Sarcoma Results in Lethal DNA Damage. 撤稿:在尤文肉瘤中联合使用 PARP-1 抑制剂和放射线会导致致命的 DNA 损伤。
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-11-04 DOI: 10.1158/1535-7163.MCT-24-0802
Hae-June Lee, Changhwan Yoon, Benjamin Schmidt, Do Joong Park, Alexia Y Zhang, Hayriye V Erkizan, Jeffrey A Toretsky, David G Kirsch, Sam S Yoon
{"title":"Retraction: Combining PARP-1 Inhibition and Radiation in Ewing Sarcoma Results in Lethal DNA Damage.","authors":"Hae-June Lee, Changhwan Yoon, Benjamin Schmidt, Do Joong Park, Alexia Y Zhang, Hayriye V Erkizan, Jeffrey A Toretsky, David G Kirsch, Sam S Yoon","doi":"10.1158/1535-7163.MCT-24-0802","DOIUrl":"10.1158/1535-7163.MCT-24-0802","url":null,"abstract":"","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":"23 11","pages":"1680"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577241/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of ATP-Competitive Human CMG Helicase Inhibitors for Cancer Intervention that Disrupt CMG-Replisome Function. 鉴定 ATP 竞争性人类 CMG 螺旋酶抑制剂,用于干扰 CMG 重组体功能的癌症干预。
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-11-04 DOI: 10.1158/1535-7163.MCT-23-0904
Shengyan Xiang, Kendall C Craig, Xingju Luo, Darcy L Welch, Renan B Ferreira, Harshani R Lawrence, Nicholas J Lawrence, Damon R Reed, Mark G Alexandrow
{"title":"Identification of ATP-Competitive Human CMG Helicase Inhibitors for Cancer Intervention that Disrupt CMG-Replisome Function.","authors":"Shengyan Xiang, Kendall C Craig, Xingju Luo, Darcy L Welch, Renan B Ferreira, Harshani R Lawrence, Nicholas J Lawrence, Damon R Reed, Mark G Alexandrow","doi":"10.1158/1535-7163.MCT-23-0904","DOIUrl":"10.1158/1535-7163.MCT-23-0904","url":null,"abstract":"<p><p>The human CMG helicase (Cdc45-MCM-GINS) is a novel target for anticancer therapy. Tumor-specific weaknesses in the CMG are caused by oncogene-driven changes that adversely affect CMG function, and CMG activity is required for recovery from replicative stresses such as chemotherapy. Herein, we developed an orthogonal biochemical screening approach and identified CMG inhibitors (CMGi) that inhibit ATPase and helicase activities in an ATP-competitive manner at low micromolar concentrations. Structure-activity information, in silico docking, and testing with synthetic chemical compounds indicate that CMGi require specific chemical elements and occupy ATP-binding sites and channels within minichromosome maintenance (MCM) subunits leading to the ATP clefts, which are likely used for ATP/ADP ingress or egress. CMGi are therefore MCM complex inhibitors (MCMi). Biologic testing shows that CMGi/MCMi inhibit cell growth and DNA replication using multiple molecular mechanisms distinct from other chemotherapy agents. CMGi/MCMi block helicase assembly steps that require ATP binding/hydrolysis by the MCM complex, specifically MCM ring assembly on DNA and GINS recruitment to DNA-loaded MCM hexamers. During the S-phase, inhibition of MCM ATP binding/hydrolysis by CMGi/MCMi causes a \"reverse allosteric\" dissociation of Cdc45/GINS from the CMG that destabilizes replisome components Ctf4, Mcm10, and DNA polymerase-α, -δ, and -ε, resulting in DNA damage. CMGi/MCMi display selective toxicity toward multiple solid tumor cell types with K-Ras mutations, targeting the CMG and inducing DNA damage, Parp cleavage, and loss of viability. This new class of CMGi/MCMi provides a basis for small chemical development of CMG helicase-targeted anticancer compounds with distinct mechanisms of action.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1568-1585"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532780/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting Ovarian Cancer Stem Cells by Dual Inhibition of the Long Noncoding RNA HOTAIR and Lysine Methyltransferase EZH2. 通过双重抑制长非编码 RNA HOTAIR 和赖氨酸甲基转移酶 EZH2 靶向卵巢癌干细胞
IF 5.3 2区 医学
Molecular Cancer Therapeutics Pub Date : 2024-11-04 DOI: 10.1158/1535-7163.MCT-23-0314
Weini Wang, Yanchi Zhou, Ji Wang, Shu Zhang, Ali Ozes, Hongyu Gao, Fang Fang, Yue Wang, Xiaona Chu, Yunlong Liu, Jun Wan, Anirban K Mitra, Heather M O'Hagan, Kenneth P Nephew
{"title":"Targeting Ovarian Cancer Stem Cells by Dual Inhibition of the Long Noncoding RNA HOTAIR and Lysine Methyltransferase EZH2.","authors":"Weini Wang, Yanchi Zhou, Ji Wang, Shu Zhang, Ali Ozes, Hongyu Gao, Fang Fang, Yue Wang, Xiaona Chu, Yunlong Liu, Jun Wan, Anirban K Mitra, Heather M O'Hagan, Kenneth P Nephew","doi":"10.1158/1535-7163.MCT-23-0314","DOIUrl":"10.1158/1535-7163.MCT-23-0314","url":null,"abstract":"<p><p>The persistence of cancer stem cells (CSC) is believed to contribute to resistance to platinum-based chemotherapy and disease relapse in ovarian cancer, the fifth leading cause of cancer-related death among US women. HOXC transcript antisense RNA (HOTAIR) is a long, noncoding RNA (lncRNA) overexpressed in high-grade serous ovarian cancer and linked to chemoresistance. However, HOTAIR impacts chromatin dynamics in ovarian CSCs. Oncogenic lncRNA's contributions to drug-resistant disease are incompletely understood. Here, we generated HOTAIR knockout (KO) high-grade serous ovarian cancer cell lines using paired CRISPR guide RNA design to investigate the function of HOTAIR. We show the loss of HOTAIR function resensitized ovarian cancer cells to platinum treatment and decreased the population of ovarian CSCs. Furthermore, HOTAIR KO inhibited the development of stemness-related phenotypes, including spheroid formation ability and expression of key stemness-associated genes ALDH1A1, NOTCH3, SOX9, and PROM1. HOTAIR KO altered the cellular transcriptome and chromatin accessibility landscape of multiple oncogenic-associated genes and pathways, including the NF-kB pathway. HOTAIR functions as an oncogene by recruiting enhancer of zeste homolog 2 (EZH2) to catalyze H3K27 trimethylation to suppress downstream tumor suppressor genes, and it was of interest to inhibit both HOTAIR and EZH2. In vivo, combining a HOTAIR inhibitor with an EZH2 inhibitor and platinum chemotherapy decreased tumor formation and increased survival. These results suggest a key role for HOTAIR in ovarian CSCs and malignant potential. Targeting HOTAIR in combination with epigenetic therapies may represent a therapeutic strategy to ameliorate ovarian cancer progression and resistance to platinum-based chemotherapy.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1666-1679"},"PeriodicalIF":5.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信