Dun Niu, Shaotong Zhang, Xiaozhuang Ma, Yaran Wu, Junshi Zhu, Jianglang Ran, Meihua Shan, Xufang Dai, Lu Lu, Mingzhen Yang, Jiqin Lian
{"title":"Intratumoral administration of engineered circRNAs encoding cytosine deaminase-uracil phosphoribosyltransferase (CDUPRT) and IL-15 elicit superior antitumor efficacy.","authors":"Dun Niu, Shaotong Zhang, Xiaozhuang Ma, Yaran Wu, Junshi Zhu, Jianglang Ran, Meihua Shan, Xufang Dai, Lu Lu, Mingzhen Yang, Jiqin Lian","doi":"10.1158/1535-7163.MCT-25-0356","DOIUrl":null,"url":null,"abstract":"<p><p>Gene-directed enzyme prodrug therapy (GDEPT) represents a promising antitumor strategy owing to its low systemic toxicity. However, clinical translation has been hindered by challenges in suicide gene delivery. Artificially engineered circular RNA (circRNA) demonstrates exceptional potential for gene delivery when combined with lipid nanoparticle (LNP) technology, exhibiting high stability, prolonged protein-coding capacity, and cost-effective production. We developed an in vitro synthesized circRNA encoding the cytosine deaminase-uracil phosphoribosyltransferase (circCDUPRT). Upon intratumoral administration, circCDUPRT achieved sustained intratumoral expression with minimal systemic toxicity. The combination of circCDUPRT and prodrug 5-fluorocytosine (5-FC) showed significant antitumor efficacy in both in vitro and in vivo tumor models. In advanced melanoma models, combining circCDUPRT/5-FC with IL-15-expressing circRNA (circIL) potently enhanced expansion and activation of CD8+ T and NK cells. Collectively, these findings establish the synthetic circRNA platform as a cost-effective, high-efficiency delivery system for GDEPT and immunotherapy applications.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-25-0356","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gene-directed enzyme prodrug therapy (GDEPT) represents a promising antitumor strategy owing to its low systemic toxicity. However, clinical translation has been hindered by challenges in suicide gene delivery. Artificially engineered circular RNA (circRNA) demonstrates exceptional potential for gene delivery when combined with lipid nanoparticle (LNP) technology, exhibiting high stability, prolonged protein-coding capacity, and cost-effective production. We developed an in vitro synthesized circRNA encoding the cytosine deaminase-uracil phosphoribosyltransferase (circCDUPRT). Upon intratumoral administration, circCDUPRT achieved sustained intratumoral expression with minimal systemic toxicity. The combination of circCDUPRT and prodrug 5-fluorocytosine (5-FC) showed significant antitumor efficacy in both in vitro and in vivo tumor models. In advanced melanoma models, combining circCDUPRT/5-FC with IL-15-expressing circRNA (circIL) potently enhanced expansion and activation of CD8+ T and NK cells. Collectively, these findings establish the synthetic circRNA platform as a cost-effective, high-efficiency delivery system for GDEPT and immunotherapy applications.
期刊介绍:
Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.