Molecular and Cellular Neuroscience最新文献

筛选
英文 中文
The mRNA expression profile of glycine receptor subunits alpha 1, alpha 2, alpha 4 and beta in female and male mice 雌性和雄性小鼠甘氨酸受体亚基 alpha 1、alpha 2、alpha 4 和 beta 的 mRNA 表达谱。
IF 2.6 3区 医学
Molecular and Cellular Neuroscience Pub Date : 2024-12-01 DOI: 10.1016/j.mcn.2024.103976
Mikaela M. Ceder, Kajsa A. Magnusson, Hannah M. Weman, Katharina Henriksson, Linn Andréasson, Teresa Lindström, Oskar Wiggins, Malin C. Lagerström
{"title":"The mRNA expression profile of glycine receptor subunits alpha 1, alpha 2, alpha 4 and beta in female and male mice","authors":"Mikaela M. Ceder,&nbsp;Kajsa A. Magnusson,&nbsp;Hannah M. Weman,&nbsp;Katharina Henriksson,&nbsp;Linn Andréasson,&nbsp;Teresa Lindström,&nbsp;Oskar Wiggins,&nbsp;Malin C. Lagerström","doi":"10.1016/j.mcn.2024.103976","DOIUrl":"10.1016/j.mcn.2024.103976","url":null,"abstract":"<div><div>Glycine receptors are ligand-gated chloride-selective channels that control excitability in the central nervous system (CNS). Herein, we have investigated the mRNA expression of the glycine receptor alpha 1 (<em>Glra1</em>), alpha 2 (<em>Glra2</em>), alpha 4 (<em>Glra4</em>) and the beta (<em>Glrb</em>) subunits, in adult female and male mice.</div><div>Single-cell RNA sequencing data re-analysis of the <span><span>Zeisel et al. (2018)</span></span> dataset indicated widespread expression of <em>Glra1</em>, <em>Glra2</em> and <em>Glrb</em> in the CNS, while only a few cells in the cortex, striatum, thalamus, midbrain and the spinal cord expressed <em>Glra4</em>. Highest occurrence of <em>Glra1</em>, <em>Glra2</em> and <em>Glrb</em> were found in the brainstem. Moreover, <em>Glra1</em> and <em>Glrb</em> were revealed to have the highest occurrences in the spinal cord of the investigated subunits. However, both <em>Glra2</em> and <em>Glrb</em> had a more widespread expression in the CNS compared with <em>Glra1</em> and <em>Glra4</em>. Bulk quantitative real-time-PCR (qRT-PCR) analysis revealed <em>Glra1</em> expression in the hypothalamus, thalamus, brainstem and the spinal cord, and widespread, but low, <em>Glra2</em> and <em>Glrb</em> expression in the CNS. Moreover, <em>Glrb</em> could be detected in a few visceral organs. Additionally, females and males were found to express <em>Glra1</em>, <em>Glra2</em> and <em>Glrb</em> differently in certain brain areas such as the brainstem. Expression levels of <em>Glra4</em> were too low to be detected using qRT-PCR. Lastly, RNAscope spatially validated the expression of <em>Glra1</em>, <em>Glra2</em> and <em>Glrb</em> in the areas indicated by the single-cell and bulk analyses, and further revealed that <em>Glra4</em> can be detected in the cortex, amygdala, hypothalamus, thalamus, brainstem, especially the cochlear nucleus, and in the spinal cord.</div></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"131 ","pages":"Article 103976"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential key pathophysiological participant and treatment target in autism spectrum disorder: Microglia 自闭症谱系障碍的潜在关键病理生理参与者和治疗目标:小胶质细胞
IF 2.6 3区 医学
Molecular and Cellular Neuroscience Pub Date : 2024-11-22 DOI: 10.1016/j.mcn.2024.103980
Zehua Tan , Ruixin Xia , Xin Zhao , Zile Yang, Haiying Liu, Wenting Wang
{"title":"Potential key pathophysiological participant and treatment target in autism spectrum disorder: Microglia","authors":"Zehua Tan ,&nbsp;Ruixin Xia ,&nbsp;Xin Zhao ,&nbsp;Zile Yang,&nbsp;Haiying Liu,&nbsp;Wenting Wang","doi":"10.1016/j.mcn.2024.103980","DOIUrl":"10.1016/j.mcn.2024.103980","url":null,"abstract":"<div><div>Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by social and communication deficits, as well as restricted or repetitive behaviors or interests. Although the etiology of ASD remains unclear, there is abundant evidence suggesting that microglial dysfunction is likely to be a significant factor in the pathophysiology of ASD. Microglia, the primary innate immune cells in the central nervous system (CNS), play a crucial role in brain development and homeostasis. Recently, numerous studies have shown that microglia in ASD models display various abnormalities including morphology, function, cellular interactions, genetic and epigenetic factors, as well as the expression of receptors, transcription factors, and cytokines. They impact normal neural development through various mechanisms contributing to ASD, such as neuroinflammation, and alterations in synaptic formation and pruning. The focus of this review is on recent studies regarding microglial abnormalities in ASD and their effects on the onset and progression of ASD at both cellular and molecular levels. It can provide insight into the specific contribution of microglia to ASD pathogenesis and help in designing potential therapeutic and preventative strategies targeting microglia.</div></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"131 ","pages":"Article 103980"},"PeriodicalIF":2.6,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sphingosine-1-phosphate receptor 3 promotes neuronal apoptosis via the TNF-α/caspase-3 signaling pathway after acute intracerebral hemorrhage 急性脑内出血后,鞘磷脂-1-磷酸受体 3 通过 TNF-α/caspase-3 信号通路促进神经细胞凋亡
IF 2.6 3区 医学
Molecular and Cellular Neuroscience Pub Date : 2024-11-22 DOI: 10.1016/j.mcn.2024.103979
Dengpan Song , Mengyuan Li , Longxiao Zhang , Kaiyuan Zhang , Yuan An , Mengzhao Feng , Fang Wang , Chi-Tai Yeh , Jian Wang , Fuyou Guo
{"title":"Sphingosine-1-phosphate receptor 3 promotes neuronal apoptosis via the TNF-α/caspase-3 signaling pathway after acute intracerebral hemorrhage","authors":"Dengpan Song ,&nbsp;Mengyuan Li ,&nbsp;Longxiao Zhang ,&nbsp;Kaiyuan Zhang ,&nbsp;Yuan An ,&nbsp;Mengzhao Feng ,&nbsp;Fang Wang ,&nbsp;Chi-Tai Yeh ,&nbsp;Jian Wang ,&nbsp;Fuyou Guo","doi":"10.1016/j.mcn.2024.103979","DOIUrl":"10.1016/j.mcn.2024.103979","url":null,"abstract":"<div><h3>Background</h3><div>Intracerebral hemorrhage (ICH) has a high incidence and mortality rate among cerebrovascular diseases, and effective treatments are lacking. Sphingosine-1-phosphate receptor 3 (S1PR3) is associated with secondary immune inflammatory injury following ICH. However, its relationship with neuronal apoptosis and the specific underlying mechanism are not clear.</div></div><div><h3>Methods</h3><div>We observed the effect of S1PR3 on neuronal apoptosis by assessing neurobehavioral scores, performing Western blot (WB) analysis, and performing TUNEL staining in a mouse model of ICH. Moreover, WBs and flow cytometry were used to study the specific mechanism and signaling pathways in HT22 cells in vitro.</div></div><div><h3>Results</h3><div>The expression of S1PR3, CCL2, TNF-α, and cleaved-caspase-3 (c-caspase-3) and neuronal apoptosis were significantly increased after ICH, accompanied by neurobehavioral deterioration. These effects were significantly improved by treatment with CAY10444, a specific S1PR3 antagonist. After S1P stimulation of HT22 cells, the expression of S1PR3, CCL2, TNF-α and c-caspase-3 increased, and neuronal apoptosis increased by activating caspase-3 through the downstream PI3K/AKT apoptosis signaling pathway. After CAY10444 treatment, the expression of CCL2, TNF-α and c-caspase-3 was significantly reduced, and the PI3K/AKT apoptotic signaling pathway was regulated to reduce neuronal apoptosis.</div></div><div><h3>Conclusion</h3><div>An increase in S1P/S1PR3 after ICH may induce neuronal apoptosis by increasing TNF-α expression and activating the PI3K/AKT signaling pathway and the expression of caspase-3 effector proteins. CAY10444 can reduce neuronal apoptosis, improve symptoms and play a neuroprotective role by antagonizing S1PR3. S1PR3 may be a promising therapeutic target.</div></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"131 ","pages":"Article 103979"},"PeriodicalIF":2.6,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142702763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TAT-PPA1 protects against oxidative stress-induced loss of dopaminergic neurons TAT-PPA1 可防止氧化应激诱导的多巴胺能神经元丧失。
IF 2.6 3区 医学
Molecular and Cellular Neuroscience Pub Date : 2024-10-31 DOI: 10.1016/j.mcn.2024.103978
Hyun Jung Kwon , Hyo Young Jung , Soo Young Choi , In Koo Hwang , Dae Won Kim , Min Jea Shin
{"title":"TAT-PPA1 protects against oxidative stress-induced loss of dopaminergic neurons","authors":"Hyun Jung Kwon ,&nbsp;Hyo Young Jung ,&nbsp;Soo Young Choi ,&nbsp;In Koo Hwang ,&nbsp;Dae Won Kim ,&nbsp;Min Jea Shin","doi":"10.1016/j.mcn.2024.103978","DOIUrl":"10.1016/j.mcn.2024.103978","url":null,"abstract":"<div><div>Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN) of the midbrain, resulting in severe motor impairments. Inorganic pyrophosphatase 1 (PPA1) plays a key role in various biological processes, and this study introduces a cell-penetrating PPA1 fusion protein (TAT-PPA1) to explore its transduction into cells and brain tissues. TAT-PPA1 effectively penetrates SH-SY5Y cells and the SN region of PD animal models without toxicity, exhibiting protective effects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-)-induced cell death. TAT-PPA1 revealed an inhibitory influence on the MAPK signaling pathway and MPTP-induced reactive oxygen species (ROS) production. TAT-PPA1 suppresses JNK, AKT, p53, ERK, and p38 phosphorylation, showcasing its multifaceted role in cell survival pathways. In the MPTP-induced PD animal model, TAT-PPA1 prevents dopaminergic cell death and enhances motor function. This study shows that TAT-PPA1 protects against oxidative stress and cell death in neurodegenerative diseases, suggesting potential as a PD treatment.</div></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"131 ","pages":"Article 103978"},"PeriodicalIF":2.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of phosphodiesterase 10A mitigates neuronal injury by modulating apoptotic pathways in cold-induced traumatic brain injury 抑制磷酸二酯酶10A可通过调节冷诱导的创伤性脑损伤中的细胞凋亡途径减轻神经元损伤。
IF 2.6 3区 医学
Molecular and Cellular Neuroscience Pub Date : 2024-10-20 DOI: 10.1016/j.mcn.2024.103977
Mustafa C. Beker , Mehmet O. Altintas , Enes Dogan , Cigdem Bayraktaroglu , Buse Balaban , Aysenur Ozpinar , Nursena Sengun , Serdar Altunay , Ertugrul Kilic
{"title":"Inhibition of phosphodiesterase 10A mitigates neuronal injury by modulating apoptotic pathways in cold-induced traumatic brain injury","authors":"Mustafa C. Beker ,&nbsp;Mehmet O. Altintas ,&nbsp;Enes Dogan ,&nbsp;Cigdem Bayraktaroglu ,&nbsp;Buse Balaban ,&nbsp;Aysenur Ozpinar ,&nbsp;Nursena Sengun ,&nbsp;Serdar Altunay ,&nbsp;Ertugrul Kilic","doi":"10.1016/j.mcn.2024.103977","DOIUrl":"10.1016/j.mcn.2024.103977","url":null,"abstract":"<div><div>Brain injury develops from a complex series of pathophysiological phases, resulting in acute necrotic or delayed apoptotic cell death after traumatic brain injury (TBI). Inhibition of apoptotic cell death is critical for the treatment of acute neurodegenerative disorders, such as TBI. Here, we investigated the role of phosphodiesterase 10A (PDE10A) in the development of neuronal injury, particularly in apoptotic cell death. Using the PDE10A inhibitor TAK-063, we found that PDE10A inhibition is associated with decreased brain injury, brain swelling, and blood brain barrier disruption 48 h after cold-induced TBI. Furthermore, a particularly notable result was observed with 3 mg/kg TAK-063, which reduced disseminated neuronal injury. Protein abundance analysis revealed that PDE10A inhibition activates survival kinases AKT and ERK-1/-2, which were associated with the decreased activation of MMP-9 and PTEN. Additionally, iNOS and nNOS levels significantly reduced in the TAK-063 group, playing roles in inflammation and apoptosis. A planar surface immunoassay was performed for in-depth analyses of the apoptotic signaling pathways. We observed that inhibition of PDE10A resulted in the decreased expression of TNFRSF1A, TNFRSF10B, and TNFRSF6 receptors, particularly inducing apoptotic cell death. Moreover, these findings correlated with reduced levels of pro-apoptotic proteins, including PTEN, p27, Cytochrome-c, cleaved Caspase-3, Bad, and p53. Interestingly, TAK-063 treatment reduced levels of anti-apoptotic proteins or enzymes, including XIAP, Claspin, and HIF1α, without affecting Bcl-x, MCL-1, SMAC, HO-1, HO-2, HSP27, HSP60, and HSP70. The findings suggest that PDE10A regulates cellular signaling predominantly pro-apoptotic pathways, and inhibition of this protein is a promising approach for the treatment of acute brain injury.</div></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"131 ","pages":"Article 103977"},"PeriodicalIF":2.6,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vulnerability of neurofilament-expressing neurons in frontotemporal dementia 额颞叶痴呆症中神经丝表达神经元的脆弱性。
IF 2.6 3区 医学
Molecular and Cellular Neuroscience Pub Date : 2024-10-05 DOI: 10.1016/j.mcn.2024.103974
Nina Daniels, Aidan D. Bindoff, James C. Vickers, Anna E. King , Jessica M. Collins
{"title":"Vulnerability of neurofilament-expressing neurons in frontotemporal dementia","authors":"Nina Daniels,&nbsp;Aidan D. Bindoff,&nbsp;James C. Vickers,&nbsp;Anna E. King ,&nbsp;Jessica M. Collins","doi":"10.1016/j.mcn.2024.103974","DOIUrl":"10.1016/j.mcn.2024.103974","url":null,"abstract":"<div><div>Frontotemporal dementia (FTD) is an umbrella term for several early onset dementias, that are caused by frontotemporal lobar degeneration (FTLD), which involves the atrophy of the frontal and temporal lobes of the brain. Neuron loss in the frontal and temporal lobes is a characteristic feature of FTLD, however the selective vulnerability of different neuronal populations in this group of diseases is not fully understood. Neurofilament-expressing neurons have been shown to be selectively vulnerable in other neurodegenerative diseases, including Alzheimer's disease and amyotrophic lateral sclerosis, therefore we sought to investigate whether this neuronal population is vulnerable in FTLD. We also examined whether neuronal sub-type vulnerability differed between FTLD with TDP-43 inclusions (FTLD-TDP) and FTLD with tau inclusions (FTLD-Tau). Post-mortem human tissue from the superior frontal gyrus (SFG) of FTLD-TDP (n = 15), FTLD-Tau (n = 8) and aged Control cases (n = 6) was immunolabelled using antibodies against non-phosphorylated neurofilaments (SMI32 antibody), calretinin and NeuN, to explore neuronal cell loss. The presence of non-phosphorylated neurofilament immunolabelling in axons of the SFG white matter was also quantified as a measure of axon pathology, as axonal neurofilaments are normally phosphorylated. We demonstrate the selective loss of neurofilament-expressing neurons in both FTLD-TDP and FTLD-Tau cases compared to aged Controls. We also show that non-phosphorylated neurofilament axonal pathology in the SFG white matter was associated with increasing age, but not FTLD. This data suggests neurofilament-expressing neurons are vulnerable in both FTLD-TDP and FTLD-Tau.</div></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"131 ","pages":"Article 103974"},"PeriodicalIF":2.6,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrocytes initiate autophagic flux and maintain cell viability after internalizing non-active native extracellular α-synuclein 星形胶质细胞在内化非活性原生细胞外α-突触核蛋白后启动自噬通量并维持细胞活力。
IF 2.6 3区 医学
Molecular and Cellular Neuroscience Pub Date : 2024-10-04 DOI: 10.1016/j.mcn.2024.103975
Fotis Andromidas , Brooke E. Mackinnon , Abigail J. Myers , Melanie M. Shaffer , Ayat Brahimi , Saeid Atashpanjeh , Tiana L. Vazquez , Timmy Le , Evan R. Jellison , Susan Staurovsky , Andrew O. Koob
{"title":"Astrocytes initiate autophagic flux and maintain cell viability after internalizing non-active native extracellular α-synuclein","authors":"Fotis Andromidas ,&nbsp;Brooke E. Mackinnon ,&nbsp;Abigail J. Myers ,&nbsp;Melanie M. Shaffer ,&nbsp;Ayat Brahimi ,&nbsp;Saeid Atashpanjeh ,&nbsp;Tiana L. Vazquez ,&nbsp;Timmy Le ,&nbsp;Evan R. Jellison ,&nbsp;Susan Staurovsky ,&nbsp;Andrew O. Koob","doi":"10.1016/j.mcn.2024.103975","DOIUrl":"10.1016/j.mcn.2024.103975","url":null,"abstract":"<div><div>Astrocytes are tasked with regulating the synaptic environment. Early stages of various neurodegenerative diseases are characterized by synapse loss, and astrocytic atrophy and dysfunction has been proposed as a possible cause. α-Synuclein (αS) is a highly expressed neuronal protein located in the synapse that can be released in the extracellular space. Evidence points to astrocytes as being responsible for uptake and degradation of extracellular αS. Therefore, misfolded active fibrillized αS resulting in protein inclusions and aggregates could be due to astrocytic dysfunction. Despite these pathological hallmarks and lines of evidence, the autophagic function of astrocytes in response to monomeric non-active αS to model healthy conditions has not been investigated. Human primary cortical astrocytes were treated with 100 nM of extracellular monomeric non-active αS alone, and in combination with N-terminal binding monomeric γ-synuclein (γS) as a control. Western blot analysis and super resolution imaging of HiLyte-488 labeled αS confirmed successful internalization of αS at 12, 24 and 48 h after treatment, while αS dimers were only observed at 48 h. Western blot analysis also confirmed αS's ability to induce autophagic flux by 48 h. Annexin V/PI flow cytometry results revealed increased early apoptosis at 24 h, but which resolved itself by 48 h, indicating no cell death in cortical astrocytes at all time points, suggesting astrocytes can manage the protein degradation demand of monomeric αS in healthy physiological conditions. Likewise, astrocytes reduced secretion of apolipoprotein (ApoE), a protein involved in pro-inflammatory pathways, synapse regulation, and autophagy by 12 h. Similarly, total c-JUN protein levels, a transcription factor involved in pro-inflammatory pathways increased by 12 h in the nuclear fraction. Therefore, astrocytes are able to respond and degrade αS in healthy physiological conditions, and astrocyte dysfunction could precede detrimental αS accumulation.</div></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"131 ","pages":"Article 103975"},"PeriodicalIF":2.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The neuroprotective effect of short-chain fatty acids against hypoxia-reperfusion injury 短链脂肪酸对缺氧再灌注损伤的神经保护作用
IF 2.6 3区 医学
Molecular and Cellular Neuroscience Pub Date : 2024-09-28 DOI: 10.1016/j.mcn.2024.103972
Anjit K. Harijan , Retnamony Kalaiarasan , Amit Kumar Ghosh , Ruchi P. Jain , Amal Kanti Bera
{"title":"The neuroprotective effect of short-chain fatty acids against hypoxia-reperfusion injury","authors":"Anjit K. Harijan ,&nbsp;Retnamony Kalaiarasan ,&nbsp;Amit Kumar Ghosh ,&nbsp;Ruchi P. Jain ,&nbsp;Amal Kanti Bera","doi":"10.1016/j.mcn.2024.103972","DOIUrl":"10.1016/j.mcn.2024.103972","url":null,"abstract":"<div><div>Gut microbe-derived short-chain fatty acids (SCFAs) are known to have a profound impact on various brain functions, including cognition, mood, and overall neurological health. However, their role, if any, in protecting against hypoxic injury and ischemic stroke has not been extensively studied. In this study, we investigated the effects of two major SCFAs abundant in the gut, propionate (P) and butyrate (B), on hypoxia-reperfusion injury using a neuronal cell line and a zebrafish model. Neuro 2a (N2a) cells treated with P and B exhibited reduced levels of mitochondrial and cytosolic reactive oxygen species (ROS), diminished loss of mitochondrial membrane potential, suppressed caspase activation, and lower rates of cell death when exposed to CoCl<sub>2</sub>, a chemical commonly used to simulate hypoxia. Furthermore, adult zebrafish fed SCFA-supplemented feeds showed less susceptibility to hypoxic conditions compared to the control group, as indicated by multiple behavioral measures. Histological analysis of 2,3,5-Triphenyltetrazolium chloride (TTC) stained brain sections revealed less damage in the SCFA-fed group. We also found that Fatty Acid Binding Protein 7 (FABP7), also known as Brain Lipid Binding Protein (BLBP), a neuroprotective fatty acid binding protein, was upregulated in the brains of the SCFA-fed group. Additionally, when FABP7 was overexpressed in N2a cells, it protected the cells from injury caused by CoCl<sub>2</sub> treatment. Overall, our data provide evidence for a neuroprotective role of P and B against hypoxic brain injury and suggest the potential of dietary supplementation with SCFAs to mitigate stroke-induced brain damage.</div></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"131 ","pages":"Article 103972"},"PeriodicalIF":2.6,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knockdown of BMP7 induced oligodendrocyte apoptosis, demyelination and motor function loss 敲除 BMP7 会诱导少突胶质细胞凋亡、脱髓鞘和运动功能丧失。
IF 2.6 3区 医学
Molecular and Cellular Neuroscience Pub Date : 2024-09-25 DOI: 10.1016/j.mcn.2024.103973
Xiaojin Wei , Shuxin Liu , Kai Chen , Meng Wang , Yaping Wang , Dingquan Zou , Yanying Xiao
{"title":"Knockdown of BMP7 induced oligodendrocyte apoptosis, demyelination and motor function loss","authors":"Xiaojin Wei ,&nbsp;Shuxin Liu ,&nbsp;Kai Chen ,&nbsp;Meng Wang ,&nbsp;Yaping Wang ,&nbsp;Dingquan Zou ,&nbsp;Yanying Xiao","doi":"10.1016/j.mcn.2024.103973","DOIUrl":"10.1016/j.mcn.2024.103973","url":null,"abstract":"<div><h3>Background</h3><div>Demyelinating diseases, including multiple sclerosis (MS) and spinal cord injury (SCI), lead to significant neurological deficits primarily due to the loss of oligodendrocytes (OLs). Bone Morphogenetic Protein 7 (BMP7) is expressed abundantly in the central nervous system and previous studies showed its protective effect in reducing OL loss. In this study, we aim to explore BMP7's potential as a biomarker and therapeutic target for demyelinating diseases by investigating its expression and effects on OLs and myelin sheath integrity.</div></div><div><h3>Method</h3><div>We analyzed multiple Gene Expression Omnibus datasets for BMP7 expression profiles in demyelinating conditions such as MS and SCI. Experimentally, we employed a BMP7 knockdown model in rat spinal cords using adeno-associated virus8 vectors to specifically reduce BMP7 expression. Western blotting, immunofluorescence, and Nissl staining were used to assess the effect on OL and other types of cells. The structure of myelin sheath and locomotor function were evaluated using transmission electron microscopy and BBB scores, and statistical analysis included ROC curves and ANOVA to evaluate BMP7's diagnostic and therapeutic potential.</div></div><div><h3>Results</h3><div>BMP7 expression consistently decreased across various demyelinating models, and BMP7 knockdown led to increased OL apoptosis through the Smad1/5/9 pathway, with no apparent effect on other cell types. This reduction in OLs was associated with myelin degeneration, axonal damage, and impaired motor function.</div></div><div><h3>Conclusion</h3><div>The study confirms BMP7's significant involvement in the pathophysiology of demyelinating diseases and supports its potential as a therapeutic target or biomarker. Future research should focus on therapeutic strategies to enhance BMP7 function and further investigate the mechanisms by which BMP7 supports myelin integrity.</div></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"131 ","pages":"Article 103973"},"PeriodicalIF":2.6,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SUMOylation modulates mitochondrial dynamics in an in vitro rotenone model of Parkinson's disease SUMOylation 在帕金森病的离体鱼藤酮模型中调节线粒体动力学
IF 2.6 3区 医学
Molecular and Cellular Neuroscience Pub Date : 2024-09-10 DOI: 10.1016/j.mcn.2024.103969
Ericks Sousa Soares , Letícia Yoshitome Queiroz , Ellen Gerhardt , Rui Daniel S. Prediger , Tiago Fleming Outeiro , Helena Iturvides Cimarosti
{"title":"SUMOylation modulates mitochondrial dynamics in an in vitro rotenone model of Parkinson's disease","authors":"Ericks Sousa Soares ,&nbsp;Letícia Yoshitome Queiroz ,&nbsp;Ellen Gerhardt ,&nbsp;Rui Daniel S. Prediger ,&nbsp;Tiago Fleming Outeiro ,&nbsp;Helena Iturvides Cimarosti","doi":"10.1016/j.mcn.2024.103969","DOIUrl":"10.1016/j.mcn.2024.103969","url":null,"abstract":"<div><p>SUMOylation is a post-translational modification essential for various biological processes. SUMO proteins bind to target substrates in a three-step enzymatic pathway, which is rapidly reversible by the action of specific proteases, known as SENPs. Studies have shown that SUMOylation is dysregulated in several human disorders, including neurodegenerative diseases that are characterized by the progressive loss of neurons, mitochondrial dysfunction, deficits in autophagy, and oxidative stress. Considering the potential neuroprotective roles of SUMOylation, the aim of this study was to investigate the effects of SENP3 knockdown in H4 neuroglioma cells exposed to rotenone, an <em>in vitro</em> model of cytotoxicity that mimics dopaminergic loss in Parkinson's disease (PD). The current data show that SENP3 knockdown increases SUMO-2/3 conjugates, which is accompanied by reduced levels of the mitochondrial fission protein Drp1 and increased levels of the mitochondrial fusion protein OPA1. Of high interest, SENP3 knockdown prevented rotenone-induced superoxide production and cellular death. Taken together, these findings highlight the importance of SUMOylation in maintaining mitochondrial homeostasis and the neuroprotective potential of this modification in PD.</p></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"131 ","pages":"Article 103969"},"PeriodicalIF":2.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信