{"title":"Preventing misuse of high-resolution remote sensing data","authors":"Eric Goberville","doi":"10.24072/pci.ecology.100102","DOIUrl":"https://doi.org/10.24072/pci.ecology.100102","url":null,"abstract":"","PeriodicalId":186865,"journal":{"name":"Peer Community In Ecology","volume":"111 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121637732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"When do dominant females have higher breeding success than subordinates? A meta-analysis across social mammals","authors":"M. Paquet","doi":"10.24072/pci.ecology.100101","DOIUrl":"https://doi.org/10.24072/pci.ecology.100101","url":null,"abstract":"In this meta analysis, Shivani et al. [1] investigate 1) whether dominance and reproductive success are generally associated across social mammals and 2) whether this relationship vary according to a) life history traits (e.g., stronger for species with large litter size), b) ecological conditions (e.g., stronger when resources are limited) and c) the social environment (e.g., stronger for cooperative breeders than for plural breeders). Generally, the results are consistent with their predictions, except there was no clear support for this relationship to be conditional on the ecological conditions. considered","PeriodicalId":186865,"journal":{"name":"Peer Community In Ecology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123733573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How to evolve an alternative stable state","authors":"T. Coulson","doi":"10.24072/pci.ecology.100100","DOIUrl":"https://doi.org/10.24072/pci.ecology.100100","url":null,"abstract":"Alternative stable states describe ecosystems that can persist in more than one configuration. An ecosystem can shift between stable states following some form of perturbation. There has been much work on predicting when ecosystems will shift between stable states, but less work on why some ecosystems are able to exist in alternative stable states in the first place. The paper by Ardichvili, Loeuille, and Dakos (2022) addresses this question using a simple model of a shallow lake. Their model is based on a trade-off between access to light and nutrient availability in the water column, two essential resources for the macrophytes they model. They then identify conditions when the ancestral macrophyte will diversify resulting in macrophyte species living at new depths within the lake. The authors find a range of conditions where alternative stable states can evolve, but the range is narrow. Nonetheless, their model suggests that for alternative stable states to exist, one requirement is for there to be asymmetric competition between competing species, with one species being a better competitor on one limiting resource, with the other being a better competitor on a second limiting resource.","PeriodicalId":186865,"journal":{"name":"Peer Community In Ecology","volume":"65 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131809637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rare behaviours can have strong effects: evidence for sexual coercion in mandrills","authors":"M. Paquet","doi":"10.24072/pci.ecology.100099","DOIUrl":"https://doi.org/10.24072/pci.ecology.100099","url":null,"abstract":"","PeriodicalId":186865,"journal":{"name":"Peer Community In Ecology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116704669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Complex but positive diversity - ecosystem functioning relationships in Riparian tropical forests","authors":"W. Ulrich","doi":"10.24072/pci.ecology.100096","DOIUrl":"https://doi.org/10.24072/pci.ecology.100096","url":null,"abstract":"","PeriodicalId":186865,"journal":{"name":"Peer Community In Ecology","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115148371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Even the current climate change winners could end up being losers","authors":"E. Vercken","doi":"10.24072/pci.ecology.100097","DOIUrl":"https://doi.org/10.24072/pci.ecology.100097","url":null,"abstract":"The pine processionary is a major pest of pine trees in the Mediterranean area. It is notably one of the few species for which a clear link between recent climate change and its northward expansion has been established (Battisti et al. 2005), and as such is often considered as globally benefitting from climate change. However, recent results show a retraction of its range at the southern limit (Bourougaaoui et al. 2021), exposed to high warming (+1.4°C in Tunisia since 1901 as opposed to +1.12°C on average in the Northern hemisphere) and extreme summer temperature events (Verner et al. 2013). Thus, it is possible that the species' adaptive abilities are being challenged at the southern limit of its native range by the magnitude of observed climate change.","PeriodicalId":186865,"journal":{"name":"Peer Community In Ecology","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124433626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Water primerose (Ludwigia grandiflora subsp. hexapetala) auto- and allogamy: an ecological perspective","authors":"Antoine Vernay","doi":"10.24072/pci.ecology.100095","DOIUrl":"https://doi.org/10.24072/pci.ecology.100095","url":null,"abstract":"..","PeriodicalId":186865,"journal":{"name":"Peer Community In Ecology","volume":"10 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113937908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Does information theory inform chemical arms race communication?","authors":"R. Medel","doi":"10.24072/pci.ecology.100094","DOIUrl":"https://doi.org/10.24072/pci.ecology.100094","url":null,"abstract":"","PeriodicalId":186865,"journal":{"name":"Peer Community In Ecology","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127033527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A longer-term view on benthic communities on artificial reefs: it’s all about location","authors":"James Davis Reimer","doi":"10.24072/pci.ecology.100093","DOIUrl":"https://doi.org/10.24072/pci.ecology.100093","url":null,"abstract":"used the extensive ARs deployed in the Gulf of Lion in the northwestern Mediterranean to examine the effects of AR shape, depth, age (time since deployment), and location, both at local and wider regional scales, specifically examining the presence and absence of five marine species; 2 gorgonian octocorals, 1 ascidian, 1 annelid, and 1 bryozoan. Results indicate that location influenced the benthic communities above all other factors, suggesting the importance of considering the geographic location in future AR deployment and management of communities. The authors theorize that larval supply processes are important in shaping the observed patterns.","PeriodicalId":186865,"journal":{"name":"Peer Community In Ecology","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123350046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How to evaluate and interpret the contribution of species turnover and interaction rewiring when comparing ecological networks?","authors":"F. Munoz","doi":"10.24072/pci.ecology.100092","DOIUrl":"https://doi.org/10.24072/pci.ecology.100092","url":null,"abstract":"Two ecological networks can differ in several extents: in that species are different in the two networks and establish new interactions (species turnover), or in that species that are present in both networks establish different interactions in the two networks (rewiring). The ecological meaning of changes in network structure is quite different according to whether species turnover or interaction rewiri ng plays a greater ra ie. Therefore, much attention has been devoted in recent years on quantifying and in terpreting the re lative changes in network structu re due to species turnover and/or rewiri ng.","PeriodicalId":186865,"journal":{"name":"Peer Community In Ecology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129758473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}