Mineralium Deposita最新文献

筛选
英文 中文
Using coupled bulk-rock geochemistry and short-wave infrared (SWIR) spectral reflectance data as rapid exploration tools in metamorphosed VHMS deposits: insights from the King Zn deposit, Yilgarn Craton, Western Australia 将大块岩石地球化学和短波红外(SWIR)光谱反射数据耦合用作变质超高分子量矿床的快速勘探工具:西澳大利亚伊尔加恩克拉通国王锌矿床的启示
IF 4.8 2区 地球科学
Mineralium Deposita Pub Date : 2024-12-19 DOI: 10.1007/s00126-024-01342-8
Cendi D. P. Dana, Steven P. Hollis, Darryl Podmore, Megan James, Riquan Azri
{"title":"Using coupled bulk-rock geochemistry and short-wave infrared (SWIR) spectral reflectance data as rapid exploration tools in metamorphosed VHMS deposits: insights from the King Zn deposit, Yilgarn Craton, Western Australia","authors":"Cendi D. P. Dana, Steven P. Hollis, Darryl Podmore, Megan James, Riquan Azri","doi":"10.1007/s00126-024-01342-8","DOIUrl":"https://doi.org/10.1007/s00126-024-01342-8","url":null,"abstract":"<p>Bulk rock geochemistry and SWIR reflectance spectroscopy are widely used by companies for rapid and cost-effective exploration of volcanic-hosted massive sulfide (VHMS) deposits. However, few studies have integrated bulk-rock geochemistry with hyperspectral reflectance spectroscopy in greenstone belts that have undergone high-grade metamorphism. Here we present an extensive dataset combining bulk-rock geochemistry with chlorite and white mica SWIR spectral reflectance from the amphibolite-grade King VHMS deposit of the Yilgarn Craton, Western Australia. At King, the footwall stratigraphy is dominated by tholeiitic mafic rocks overlain by a sequence of calc-alkaline intermediate-felsic metavolcanic rocks. The hanging-wall stratigraphy is characterized by a thin metaexhalite layer, overlain by thick succession of interbedded metasedimentary and metavolcanic rocks. Chlorite spectral signatures are more Fe-rich in mafic lithologies and Mg-rich in felsic rocks, particularly where intense Mg-metasomatism occurred before metamorphism. In all units, Fe/Mg ratios of chlorite are strongly tied to bulk rock Fe/Mg ratios. White mica in the footwall is primarily muscovitic, with minor amounts of phengite in deep Fe-rich mafic rocks. By contrast, the hanging-wall sequence is dominated by phengitic signatures in both the Fe-rich metaexhalite, and weakly Ca-Mg altered volcanic rocks. This study concludes that chlorite SWIR reflectance is largely influenced by the bulk Fe/Mg composition of the host rock, whereas white mica reflectance correlates with the type and intensity of hydrothermal alteration prior to metamorphism. These findings underscore the potential of using chlorite and white mica spectral signatures to understand hydrothermal alteration patterns and detect new orebodies in metamorphosed VHMS systems.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"41 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Origin of the giant Devonian Daxigou sedimentary siderite deposit, Central China 中国中部泥盆纪大溪沟沉积菱铁矿床的起源
IF 4.8 2区 地球科学
Mineralium Deposita Pub Date : 2024-12-16 DOI: 10.1007/s00126-024-01336-6
Yuanjun Jonathan Lyu, Mei-Fu Zhou, Rui-Zhong Hu, Zerui Ray Liu, Yanfeng Zhao
{"title":"Origin of the giant Devonian Daxigou sedimentary siderite deposit, Central China","authors":"Yuanjun Jonathan Lyu, Mei-Fu Zhou, Rui-Zhong Hu, Zerui Ray Liu, Yanfeng Zhao","doi":"10.1007/s00126-024-01336-6","DOIUrl":"https://doi.org/10.1007/s00126-024-01336-6","url":null,"abstract":"<p>Sedimentary Fe deposits are both scientifically and economically important. As a major ore mineral of these deposits, siderite is generally assumed to have been formed via diagenetic transformation of other Fe-bearing minerals. The Devonian Daxigou sedimentary siderite deposit, Central China, contains ca. 500 Mt Fe with an average ore grade of ca. 30 wt% FeO<sup>T</sup> but is poorly known in the literature. Different from most sedimentary Fe deposits that contain multiple generations of Fe-bearing minerals, the ore mineral in this deposit is solely siderite, and thus may provide valuable information about the processes of siderite mineralization. Stratiform orebodies of the Daxigou deposit are hosted in a turbidite sequence formed in the Devonian Zhashui-Shanyang intraplate rift basin. Orebodies are composed of interbedded ore and mudstone layers. The ore mineral is siderite and gangue minerals are quartz and clay minerals (mainly muscovite and illite). Siderite has shale-normalized REE+Y patterns with positive Eu anomalies (Eu/Eu*<sub>PAAS</sub> = 1.19–1.59) and low Y/Ho ratios (Y/Ho = 27.5–32.6) indicative of involvement of seafloor hydrothermal fluids. Siderite separates have εNd<sub>(t)</sub> values from − 9.9 to -8.9, suggesting that Fe was leached from underlying clastic rocks. Siderite has δ<sup>13</sup>C<sub>PDB</sub> values from − 3.45 to -1.09‰ and δ<sup>56</sup>Fe<sub>IRMM014</sub> values from − 0.72‰ to -0.27‰, with only limited fractionations relative to dissolved inorganic carbon in seawaters and to hydrothermally derived Fe<sup>2+</sup>. High resolution transmission electron microscopic images reveal that siderite grains were nucleated on the surface of clay minerals. Thus, we conclude that siderite of the Daxigou deposit was precipitated directly from ferruginous seawaters via heterogeneous nucleation on clay minerals at elevated temperatures, instead of formation through diagenetic transformation from other Fe-bearing minerals. The Daxigou deposit can be considered as a unique primary sedimentary siderite deposit. It was formed under an extensional regime of the South China Craton during the breakup of Gondwana. Our study provides new insights about the mineralization pathways of sedimentary Fe deposits in the geological past.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"47 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Age and genesis of hydrothermal Ni-PGE-Te mineralisation in the Gondpipri mafic–ultramafic complex, central India: constraints from zircon U–Pb geochronology and magnetite-pyrite geochemistry
IF 4.8 2区 地球科学
Mineralium Deposita Pub Date : 2024-12-13 DOI: 10.1007/s00126-024-01338-4
Muduru L. Dora, Dewashish Upadhyay, Srinivas R. Baswani, Tushar Meshram, Mrinal Kanti Mukherjee, Satya Narayan Mahapatro, Kirtikumar Randive
{"title":"Age and genesis of hydrothermal Ni-PGE-Te mineralisation in the Gondpipri mafic–ultramafic complex, central India: constraints from zircon U–Pb geochronology and magnetite-pyrite geochemistry","authors":"Muduru L. Dora, Dewashish Upadhyay, Srinivas R. Baswani, Tushar Meshram, Mrinal Kanti Mukherjee, Satya Narayan Mahapatro, Kirtikumar Randive","doi":"10.1007/s00126-024-01338-4","DOIUrl":"https://doi.org/10.1007/s00126-024-01338-4","url":null,"abstract":"<p>The Gondpipri layered mafic–ultramafic intrusion at the western margin of the Bastar Craton in Central Indiacomprises leucogabbro, gabbronorite, and websterite. The intrusion hosts both magmatic and hydrothermal Ni-platinum group element (PGE)mineralisation. In this study, we use <i>in-situ</i> measured trace element composition of pyrite and magnetite and zircon U–Pb geochronology to elucidate hydrothermal processes and their timing. Secondary platinum group minerals (PGMs) occur as veins and fracture fillings in sulfide and oxide minerals together with hydrothermal zircon clusters within chlorite alteration. Electron microprobe (EPMA) analysis reveals that magmatic PGMs are enriched in Pt, Pd, and Rh, whereas the hydrothermal PGMs are characterized by higher Fe, S, Te, Bi, and Ni. A semi-metal collector model (Bi-Te) is proposed for PGE in the Heti Ni-PGE prospect, where an immiscible Bi-Te melt exsolves and acts as a collector for formation of primary PGM following precipitation of Pd tellurides, tsumoite, melonite and hessite upon cooling of temperature hydrothermal fluids. Two generations of pyrite (Py-I and Py-II) and magnetite (Mag-I and Mag-II) are identified. Py-I and Py-II exhibit distinctive concentrations of Co, Se, and Au, while Mag-I and Mag-II have variable concentrations of REEs, Cr, Ti, Ga, V, Ba, and Sr. Selenium geothermometry of pyrite indicates that hydrothermal mineralisation occurred within a temperature range of 200 °C to 475 °C. The Ni-PGM-Bi-Te mineralisation is associated with an unusual cluster of megacrystic zircons, which are likely hydrothermal origin. Uranium-lead (U–Pb) dating of five zircons using LA-ICPMS yields a concordia age of 2524 ± 7 Ma, interpreted as the age of the hydrothermal sulfide-hosted Ni-Te-Bi-PGE mineralization.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"41 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Slab-derived fluids as a crucial factor for the metallogeny of porphyry deposits in the Yidun arc, SW China
IF 4.8 2区 地球科学
Mineralium Deposita Pub Date : 2024-12-11 DOI: 10.1007/s00126-024-01340-w
Zhendong Tian, Bernd Lehmann, Chengbiao Leng, Changzhou Deng, Lingjian Gao, Xingchun Zhang, Anbo Luo, Di Chen, Runsheng Yin
{"title":"Correction to: Slab-derived fluids as a crucial factor for the metallogeny of porphyry deposits in the Yidun arc, SW China","authors":"Zhendong Tian, Bernd Lehmann, Chengbiao Leng, Changzhou Deng, Lingjian Gao, Xingchun Zhang, Anbo Luo, Di Chen, Runsheng Yin","doi":"10.1007/s00126-024-01340-w","DOIUrl":"https://doi.org/10.1007/s00126-024-01340-w","url":null,"abstract":"","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"200 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The metamorphosed Neoarchean epithermal Vent prospect, Ontario, Canada
IF 4.8 2区 地球科学
Mineralium Deposita Pub Date : 2024-12-11 DOI: 10.1007/s00126-024-01331-x
Keaton R. Strongman, Harold L. Gibson, Bruno Lafrance, Michael A. Hamilton, Ben Goldman, Douglas K. Tinkham
{"title":"The metamorphosed Neoarchean epithermal Vent prospect, Ontario, Canada","authors":"Keaton R. Strongman, Harold L. Gibson, Bruno Lafrance, Michael A. Hamilton, Ben Goldman, Douglas K. Tinkham","doi":"10.1007/s00126-024-01331-x","DOIUrl":"https://doi.org/10.1007/s00126-024-01331-x","url":null,"abstract":"<p>Epithermal precious metal deposits are uncommon within the Archean rock record, as are detailed descriptions of their associated features and modes of formation. The Vent prospect is a Neoarchean Au–Ag occurrence within the Eastern Wabigoon Subprovince of the Superior Province in Ontario. It is hosted by aphyric, and quartz ± feldspar-porphyritic aphanitic dacitic flows that show remnants of spine-like structures within blocky flow top breccia facies that lack visible hyaloclastite, consistent with subaerial emplacement. Numerous phreatic breccia dikes containing rounded, heterolithic, fragments in a fine rock flour and locally altered matrix intrude the dacitic host rocks, supporting a subaerial setting. Discordant replacement and stringer Au- and Ag-bearing pyrite mineralization is associated with a decimeter-scale, zoned, discordant sequence of metamorphic associations consisting of a) quartz-pyrite; b) kyanite-quartz; c) muscovite-kyanite; and d) muscovite. The geochemical characteristics of these metamorphic associations reflect intense pre-metamorphic acidic alteration. These lithofacies, alteration characteristics, and mineralization styles are consistent with a subaerial volcanic edifice altered by acidic hydrothermal fluids, which periodically brecciated the edifice. We propose that the features that characterize the Vent prospect are consistent with those of Phanerozoic epithermal systems. New U–Pb zircon geochronology of the host dacites indicate formation at ca. 2720 Ma, suggesting that the Vent prospect may represent one of the oldest identified epithermal deposits preserved in the ancient rock record. The recognition of epithermal mineralization in Archean greenstone belts underlain by Mesoarchean crust, such as those of the Eastern Wabigoon, opens up the possibility of potential for gold and silver in other underexplored Archean greenstone belts.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"49 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paleoproterozoic Mississippi Valley-type mineralization at Black Angel, Greenland: evidence from sulfide δ66Zn and rhenium-osmium geochronology
IF 4.8 2区 地球科学
Mineralium Deposita Pub Date : 2024-12-09 DOI: 10.1007/s00126-024-01332-w
Nicolas J. Saintilan, Corey Archer, Kristoffer Szilas, Kristina Krüger Geertsen, Diogo Rosa, Jorge E. Spangenberg
{"title":"Paleoproterozoic Mississippi Valley-type mineralization at Black Angel, Greenland: evidence from sulfide δ66Zn and rhenium-osmium geochronology","authors":"Nicolas J. Saintilan, Corey Archer, Kristoffer Szilas, Kristina Krüger Geertsen, Diogo Rosa, Jorge E. Spangenberg","doi":"10.1007/s00126-024-01332-w","DOIUrl":"https://doi.org/10.1007/s00126-024-01332-w","url":null,"abstract":"<p>We provide timestamps for the major zinc-lead (Zn-Pb) Mississippi Valley-type Black Angel deposit (Greenland) based on new pyrite rhenium-osmium (Re-Os) isotope geochemistry data: (1) a Re-Os isochron age 1,884 ± 35 million years ago (Ma – 2σ, 1.8%) for subhedral pyrite cemented by sphalerite ± galena in dolomitized clean limestone, and, (2) a Re-Os model age 1,828 ± 16 Ma (2σ, 0.9%) for epigenetic massive pyrite in siltstone/mudstone cap rock. Zinc-lead mineralization in evaporite-bearing carbonates in the Karrat Basin took place ca. 1,884 Ma at the time of far-field fluid flow associated with back-arc spreading ca. 1,900–1,850 Ma. Mineralization predates the development of the Rinkian foreland basin (ca. 1,850 – &lt; 1,800 Ma) and a collisional stage (ca. 1,830 – &lt; 1,800 Ma) in the context of the telescoping Rinkian and the Nagssugtoqidian Orogens. Replacement of clean carbonate and sustained acid neutralization led to significant sphalerite precipitation ca. 1,884 Ma. Conversely, precipitation of epigenetic massive pyrite in the cap rock ca. 1,828 Ma may signal (1) the lack of chemical reactivity of the cap rock for the pH-buffered conditions needed for Zn-Pb mineralization, and (2) the unfavorable impact of incipient regional Rinkian metamorphism (ca. 1,830–1,800 Ma) and tectonic compression on aquifer permeability and continued brine migration. The initial <sup>187</sup>Os/<sup>188</sup>Os ratio (Os<sub>i-pyrite</sub> = 1.07 ± 0.32) from isochron regression identifies a crustal origin for Os and, by corollary, other metals in the ca. 1,884 Ma Zn-Pb mineralization. Although the Rae Craton basement rocks comprise the dominant source for metals (based on our Os<sub>i-pyrite</sub> and δ<sup>66</sup>Zn<sub>pyrite/sphalerite</sub> data), we identify a complementary contribution in Zn (maximum 12–24%) from Paleoproterozoic sedimentary carbonate. This source of Zn in sedimentary calcite is deemed possible in the context of Paleoproterozoic seawater at high Na/Cl ratio and in the absence of Zn-based eukaryotic metabolism in shallow marine environment.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"213 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zircon petrochronology and chemistry reveal the formation of the giant tungsten deposit at Dahutang in South China by multi-stage tungsten enrichments
IF 4.8 2区 地球科学
Mineralium Deposita Pub Date : 2024-11-28 DOI: 10.1007/s00126-024-01326-8
Yanshen Yang, Zhiming Yang, Xiaofei Pan, Xin Li, Zengqian Hou
{"title":"Zircon petrochronology and chemistry reveal the formation of the giant tungsten deposit at Dahutang in South China by multi-stage tungsten enrichments","authors":"Yanshen Yang, Zhiming Yang, Xiaofei Pan, Xin Li, Zengqian Hou","doi":"10.1007/s00126-024-01326-8","DOIUrl":"https://doi.org/10.1007/s00126-024-01326-8","url":null,"abstract":"<p>Tungsten enrichment during the formation of giant W deposits is thought to be related to magmatic and hydrothermal processes. However, the mechanisms of W enrichment and their role in controlling ore formation remain unclear. Zircon is a ubiquitous accessory mineral that can provide a record of the physicochemical conditions during mineralization. Dahutang in South China is a giant W deposit (1.89 Mt WO<sub>3</sub> at 0.18%) associated with the late Mesozoic granites. In this study, we report new zircon morphological, geochronological, and chemical data for the most evolved Li-mica albite granite in the Dahutang deposit, in order to determine the processes of W enrichment. We classified the zircons into three types based on their appearance and composition. Type-IA and -IB zircons (ca. 145 Ma) successively crystallized from metasedimentary-derived magmas (δ<sup>18</sup>O = 8.9 ± 0.3‰) at 786–732 °C. Type-II zircons formed by interaction between volatile-rich melts and Type-I zircons at 669 ± 39 °C. Type-III zircons formed by autometasomatism of earlier Type-I and -II zircons, which involved exsolved hydrosilicate fluids. Our numerical model shows that the granitic melts have undergone &gt; 95% fractional crystallization and experienced metasomatism by hydrosilicate fluids, during which the rare-metals (W, Nb, and Ta) were extensively enriched. Furthermore, we compiled data for ten W deposits across South China to investigate the key factors controlling the formation of giant W deposits. The strong correlation (R<sup>2</sup> = 0.79) between WO<sub>3</sub> tonnage and zircon Hf content indicates that an extensive and multi-stage evolution may be the key factor controlling the formation of giant W deposits.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"10 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142753765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Slab-derived fluids as a crucial factor for the metallogeny of porphyry deposits in the Yidun arc, SW China
IF 4.8 2区 地球科学
Mineralium Deposita Pub Date : 2024-11-28 DOI: 10.1007/s00126-024-01334-8
Zhendong Tian, Bernd Lehmann, Chengbiao Leng, Changzhou Deng, Lingjian Gao, Xingchun Zhang, Anbo Luo, Di Chen, Runsheng Yin
{"title":"Slab-derived fluids as a crucial factor for the metallogeny of porphyry deposits in the Yidun arc, SW China","authors":"Zhendong Tian, Bernd Lehmann, Chengbiao Leng, Changzhou Deng, Lingjian Gao, Xingchun Zhang, Anbo Luo, Di Chen, Runsheng Yin","doi":"10.1007/s00126-024-01334-8","DOIUrl":"https://doi.org/10.1007/s00126-024-01334-8","url":null,"abstract":"<p>Porphyry deposits of the Cu-Mo-Au-Re metal spectrum mainly occur in arc settings, but only some segments of the same arc host significant metal resources. The factors controlling the variable metal endowment in magmatic arcs remain unclear. Here, we conducted zircon U-Pb age, trace element, and Hg isotope studies on the ore-bearing (i.e., fertile) and coeval barren granitic rocks from the Upper Triassic Yidun arc, eastern Tibetan Plateau. The results show that the barren granites from the northern Yidun arc display normal arc magma features, and have low oxygen fugacities (ΔFMQ= -3.7 to -0.5), low water contents. Their negative Δ<sup>199</sup>Hg values (-0.20 to 0.02‰) indicate that they were mainly derived from continental basement rocks. The fertile granites from the southern Yidun arc exhibit adakitic geochemical affinity (i.e., high Sr/Y and La/Yb ratios), high oxygen fugacities (ΔFMQ = 0.2 to 2.7), and high water contents. Their positive Δ<sup>199</sup>Hg values (-0.07 to 0.23‰) indicate an oceanic source of the Hg and suggest that they were derived from an enriched mantle source modified by oxidizing, subduction-related fluids/melts. The contrasting characteristics of fertile and barren granites indicate that magma sources likely have a critical control on the metallogenic potential of arc magmas, with slab-derived fluids imprinting high <i>f</i>O<sub>2</sub> and volatile contents for the formation of productive intrusions in arc settings. Arc magmas derived from oxidized and water-riched magma sources have a predisposition to form porphyry Cu deposits, and should be regarded as priority targets for porphyry deposit exploration.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"3 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142753764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
El Zorro: early Jurassic intrusion-related gold (IRG) mineralization in the oldest, western-most segment of the Andean Cordillera of Northern Chile 埃尔佐罗:智利北部安第斯科迪勒拉山系最古老、最西段的早侏罗世侵入相关金矿(IRG)成矿作用
IF 4.8 2区 地球科学
Mineralium Deposita Pub Date : 2024-11-06 DOI: 10.1007/s00126-024-01324-w
Eduardo Fritis, Nicholas H. S. Oliver, Michael C. Rowe, Julie V. Rowland, Zeffron C. Reeves, Huiqing Huang
{"title":"El Zorro: early Jurassic intrusion-related gold (IRG) mineralization in the oldest, western-most segment of the Andean Cordillera of Northern Chile","authors":"Eduardo Fritis, Nicholas H. S. Oliver, Michael C. Rowe, Julie V. Rowland, Zeffron C. Reeves, Huiqing Huang","doi":"10.1007/s00126-024-01324-w","DOIUrl":"https://doi.org/10.1007/s00126-024-01324-w","url":null,"abstract":"<p>The El Zorro gold district is the most recent gold discovery in the Coastal Cordillera of northern Chile. Ternera is the largest deposit in the district with total resources currently estimated at 1.282 Moz. New geology, geochemistry and geochronology data indicate that hydrothermal mineralization is mostly hosted within felsic to intermediate, ilmenite-bearing calc-alkaline dikes and stocks of the Upper Triassic to Lower Jurassic Relincho Pluton, and some of the adjacent Devonian to Carboniferous metasediments of the Chañaral Epimetamorphic Complex. Sheeted veins, veinlets, and fault zones with quartz, low amounts of pyrite, pyrrhotite and arsenopyrite, and local calcite are surrounded by narrow haloes of albite-biotite-quartz ± sulfides-K-feldspar-sericite-chlorite. Gold (mostly in the veins) is associated with elevated W-Bi and also As-Te-Sn, and not with iron enrichment or base metals, even though this system is proximal (~ 20 km) to IOCG and IOA deposits of the Coastal Cordillera. The main phase of gold mineralization occurred soon after emplacement of tonalitic dikes and granodiorite from the Relincho and Cuevitas plutons (U–Pb zircon between ~ 205 and 190 Ma), about 80 m.y. later than the development of orogenic fabrics. An absolute upper age limit is provided by compositionally distinct ore-cutting mafic dikes dated at 175–170 Ma (U–Pb apatite). The deposit falls into the intrusion-related gold category, as indicated by the cutting of earlier orogenic fabrics, the metal and alteration associations, and the spatial and temporal connection to reduced ilmenite-series intrusions, which are also very similar geochemically to the ‘type-locality’ IRG intrusions of the Tintina Belt in Yukon/Alaska. The El Zorro gold district represents the oldest and geologically western-most mineralizing event in the Central Andes of northern Chile, consistent with its time–space placement within the tectonic framework of easterly-younging mineralization and igneous activity in the Chilean Cordillera.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"146 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trace element and isotope composition of calcite, apatite, and zircon associated with magmatic sulfide globules 与岩浆硫化物球有关的方解石、磷灰石和锆石的微量元素和同位素组成
IF 4.8 2区 地球科学
Mineralium Deposita Pub Date : 2024-10-31 DOI: 10.1007/s00126-024-01318-8
Maria Cherdantseva, Marco L. Fiorentini, Christopher M. Fisher, Antony I. S. Kemp, Laure A. J. Martin, Matvei Aleshin, Malcolm P. Roberts
{"title":"Trace element and isotope composition of calcite, apatite, and zircon associated with magmatic sulfide globules","authors":"Maria Cherdantseva, Marco L. Fiorentini, Christopher M. Fisher, Antony I. S. Kemp, Laure A. J. Martin, Matvei Aleshin, Malcolm P. Roberts","doi":"10.1007/s00126-024-01318-8","DOIUrl":"https://doi.org/10.1007/s00126-024-01318-8","url":null,"abstract":"<p>The formation of volatile-rich phases in magmatic sulfide systems has been interpreted at least in six different ways. The most popular model attributes their origin to secondary processes, mostly due to the presence of serpentine, chlorite, phlogopite, amphibole, and calcite. While chlorite and serpentine are likely to form as alteration products, the other volatile-rich minerals have the potential to originate in a range of ways, including by primary magmatic processes. Based on mineralogical and petrological studies, it was recently suggested that volatile- and incompatible element-rich halos around sulfide globules may form due to the interaction between three immiscible liquids: silicate, carbonate, and sulfide. This hypothesis was confirmed by experimental data revealing the systematic envelopment of sulfide globules by carbonate melt, indicating their mutual affinity. In this study, we present data on isotopic signatures and trace element distributions of three minerals commonly found in spatial association with sulfides—calcite, apatite, and zircon—to address the question of the source and nature of volatiles and other incompatible elements involved in the formation of the halos. Here we compare our new hypothesis with all the previously proposed explanations to show if they can be consistent with obtained results. Our findings indicate that both mantle and crustal sources play a role in the formation of volatile- and incompatible element-rich halos, strongly correlating with sulfur isotope data previously reported for the sulfide globules in the same intrusions. This correlation confirms the shared origin of sulfides, carbonate and fluids during ore-forming processes, ruling out the secondary origin of volatile-rich phases. The isotope and trace element signatures support the newly proposed hypothesis that volatile- and incompatible element-rich halos could have been formed due to the interaction of immiscible sulfide, carbonate, and silicate melts. The volatile-rich carbonate melt could be sourced from the mantle or it could be added from the crust. Regardless of the origin, carbonate melt and sulfide liquid both immiscible with mafic magma tend to stick to each other resulting in the formation of volatile- and incompatible element-rich halos commonly documented in magmatic sulfide deposits.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"19 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信