{"title":"Fractographic analysis of the aluminum matrix composite prepared by accumulative roll bonding","authors":"I. Cvijović-Alagić, V. Maksimović, M. Jovanović","doi":"10.30544/569","DOIUrl":"https://doi.org/10.30544/569","url":null,"abstract":"Recent research in the material science field is focused on the easy-to-apply and cost-effective production of the structural components with enhanced mechanical properties. As an answer to these new trends in the present study, the inexpensive household aluminum foils are used to produce the multilayer aluminum matrix composite. The aluminum matrix composites are manufactured by hot-rolling of the sandwiched foils and afterward subjected to microstructural characterization and mechanical testing. Analysis of the produced composite microstructure and fracture surface obtained after tensile testing was performed using the scanning electron microscopy (SEM). The qualitative fractographic analysis revealed that the ductile fracture features prevail in the overall fracture mode of the investigated multilayer composite, while the quantitative fractographic investigation allowed more detailed insight into the composite failure process and depicted critical parameters that led to the composite failure.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86618684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metallurgical investigations of Indo-Sasanian Copper-Silver alloy coins of Gurjara-Pratiharas dynasty","authors":"Meenakshi Malsure, Preeti Verma, Singh Rajdeo","doi":"10.30544/524","DOIUrl":"https://doi.org/10.30544/524","url":null,"abstract":"Five Indo-Sasanian copper-silver alloy coins were examined to determine the chemical composition and fabrication route. Based on iconography, the investigated coins were dated in the range 8th to 9th century CE. The chemical composition of the coins confirmed that the coins were made of copper-silver alloy. The percentage of silver was found to be in the range from 14 wt.% to 16 wt.%, and other elements iron and lead were present as impurities. There was no significant difference in the chemical composition from the surface to the center. Chlorine was detected in the localized green corrosion, which confirms the presence of active corrosion, and coins must be conserved by giving proper conservation treatment. The formation of unusual active corrosion compounds i.e. paratacamite was identified by the XRD, and this may be formed due to the exposure of coins to river water and soil. Optical microscopy revealed the dendritic and dual-phase structure, and the presence of dendrite showed that the coins were manufactured by the casting. It was confirmed from the optical microscopy that coins were not subjected to heat treatment and deformation. The microstructure consists of dual phases, in which the white phase is silver-rich, and the black phase is rich in copper. The morphology and chemical composition of the corrosion compound formed on the surface of the coins mainly indicated the formation of copper oxide with different morphology.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"76 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88577393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Manasijević, Ljubiša Balanović, T. Grgurić, M. Gorgievski, I. Marković, V. Ćosović, M. Premović, D. Minić
{"title":"Thermal and microstructural analysis of the low-melting Bi-In-Pb alloy","authors":"D. Manasijević, Ljubiša Balanović, T. Grgurić, M. Gorgievski, I. Marković, V. Ćosović, M. Premović, D. Minić","doi":"10.30544/564","DOIUrl":"https://doi.org/10.30544/564","url":null,"abstract":"Low-melting alloys, based on bismuth and indium, have found commercial use in soldering, safety devices, coatings, and bonding applications. In this respect, the accurate knowledge of their thermal properties such as melting and solidification temperatures, latent heat of melting, supercooling tendency, etc. is of large importance. In the present research, low-melting alloy with nominal composition Bi40In40Pb20 (at. %) was investigated by means of scanning electron microscopy (SEM) with energy dispersive Xray spectrometry (EDS) and by differential scanning calorimetry (DSC). Microstructural and chemical (SEM-EDS) analysis has revealed the existence of two coexisting phases in the prepared alloy, which was identified as BiIn and (Pb). Melting and solidification temperatures and the related heat effects were measured by the DSC technique. The solidus temperature obtained from the DSC heating curves was 76.3 °C and the solidus temperature obtained from the corresponding DSC cooling runs was 61.2 °C. The experimentally obtained results were compared with the results of thermodynamic calculation according to CALPHAD (calculation of phase diagram) approach, and a close agreement was noticed.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77924208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on structural, mechanical, electronic, vibrational, optical and thermo-dynamical behaviour of ZB Structured BeZ (Z=S, Se and Te) using ATK-DFT","authors":"K. Mishra","doi":"10.30544/475","DOIUrl":"https://doi.org/10.30544/475","url":null,"abstract":"The present research is a systematic computational study focused on structural, mechanical, electronic, vibrational, optical and thermo-dynamical properties of zincblende (B3) structured beryllium chalcogenides BeZ (Z=S, Se, Te) compounds using ATK-DFT method using PZ and PBEsol exchange and correlation potentials within the local density approximation (LDA) and the generalized gradient approximation (GGA) respectively and their comparison. The k-point and energy cut-off values were tested and provided convergence in self-consistent calculations. The structural parameters such as lattice constant, bulk modulus, second order elastic constants (C11, C12, C44) and material properties (B, G, Y and σ) for these crystals are computed and discussed. To explain the electronic properties, electronic energy band structure, complex band structures, phonon band structure, phonon density of state and electron density distribution are plotted. The effect of pressure on elastic constant, material properties and phase transitions are also studied, including phase transition from ZB structure to NiAs appearing at 53 GPa, 49 GPa and 33 GPa for BeS, BeSe, and BeTe respectively.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"47 1","pages":"253-278"},"PeriodicalIF":0.0,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78292735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bake hardening effect of the low strength interstitial free steel","authors":"A. Bui, M. Nguyen, C. Nguyen","doi":"10.30544/492","DOIUrl":"https://doi.org/10.30544/492","url":null,"abstract":"This paper investigates the influence of pre-strain and temperature on the bake hardening (BH) effect of the low strength interstitial free (IF) steel with the yield strength of 137 MPa. The tensile specimens were pre-strained to 2-4-6 % at room temperature followed by baking at temperatures of 150-200-250 C for 20 minutes. The BH strength was determined by a standard procedure based on the difference between the lower yield strength of the baked specimen and the flow stress of the initial one. The microstructure of the IF steels was characterized by optical microscopy and scanning electron microscopy for the purpose of explaining the BH effect. All the initial and baked steels show a microstructure that includes the ferrite phase, of an average grains size of 45 μm. This observation was consistent with the mechanical properties of the initial steel. The BH strengths have been achieved from 12 to 35 MPa, in which the maximum value was found for the specimen that pre-strained to 6 % and baked at 200 C. The BH strengths increased with increasing the pre-strain, but slightly decreased when the baking temperature was 250 C. This mechanism is attributed to pinning of dislocation by carbon solute atoms during the baking process, and the BH strength was correlated with grain boundary segregation.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"76 1","pages":"293-301"},"PeriodicalIF":0.0,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76788738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Taguchi parametric study on the radial and tangential cutting forces in Dry High Speed Machining (DHSM)","authors":"M. Hatami, H. Safari","doi":"10.30544/472","DOIUrl":"https://doi.org/10.30544/472","url":null,"abstract":"In this paper, L8 Taguchi array is applied to find the most important parameter effects on the radial and tangential cutting forces of a Ti–6Al-4V ELI titanium alloy in dry high speed machining (DHSM). The experiments are performed in four cutting speeds of 150, 200, 250, and 300 m/min and two feed rates of 0.03 and 0.06 mm/rev. Also, two cutting tools in types of XOMX090308TR-ME06 of uncoated (H25) and TiAlN+TiN coated (F40M) are used. Results confirm that to minimize the resultant cutting force and radial cutting force, using the lower feed rate (0.03 mm/rev) and higher cutting speed (300 m/min) were considered as the best levels of studied factors.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"1 1","pages":"303-316"},"PeriodicalIF":0.0,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88596198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Petrík, P. Blaško, V. Mikloš, A. Pribulova, P. Futas, Andrea Vasilňaková, M. Šolc
{"title":"The load dependence of the micro-hardness of the blast furnace slag","authors":"J. Petrík, P. Blaško, V. Mikloš, A. Pribulova, P. Futas, Andrea Vasilňaková, M. Šolc","doi":"10.30544/512","DOIUrl":"https://doi.org/10.30544/512","url":null,"abstract":"Deposits of old blast-furnace slag are an environmental problem. The slag’s hardness is an important for calculation of the energy cost for crushing and grinding process. Due to its porosity, measurement of the (macro) hardness is. To adapt the dimensions of the indentations to the character of the slag, it is necessary to apply loads in the range of micro-hardness. The purpose of this paper is to evaluate the influence of load on the micro-hardness - the Indentation Size Effect (ISE) using Meyer’s, Hays-Kendall and PSR methods. ISE for all samples is “normal”, the slag’s basicity affects micro-hardness and ISE.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"49 1","pages":"329-340"},"PeriodicalIF":0.0,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74437125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of post weld heat treatment on metallurgical and mechanical properties of electron beam welded AISI 409 ferritic steel","authors":"Akash Doomra, S. Sandhu, Beant Singh","doi":"10.30544/545","DOIUrl":"https://doi.org/10.30544/545","url":null,"abstract":"The applicability of ferritic stainless steel is restricted due to its low weldability, and this can be attributed to the severe grain growth in the weld zone during the solidification of the weld pool and formation of fully ferritic structure. This study aims to investigate the weldability of 18 mm thick AISI 409 ferritic stainless steel plates using an electron beam welding process without the use of filler metal. The joints were investigated for metallography characterization (microstructure, macrostructure, and microhardness) and mechanical behavior (tensile strength and impact toughness) in aswelded condition and after post-weld heat treatment at 550 oC for 75 minutes. The weld zone exhibited large columnar grains in the direction perpendicular to the weld centerline and got refined after post-weld heat treatment. The ultimate tensile strength, yield strength, and microhardness of the weld zone were found higher than the base metal. The impact toughness of weld zone was found to be reduced by 45%, but the post-weld heat treatment improved the toughness by 40%. Results revealed that the electron beam welding process could be successfully employed for welding of AISI 409 ferritic stainless steel, which will increase its application range that requires thicker section of welded plates. Post-weld heat treatment was found to be advantageous for improving the microstructure and mechanical properties.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"16 1","pages":"279-292"},"PeriodicalIF":0.0,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87557264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kamel Chadi, N. Belghar, M. Falek, Z. Driss, B. Guerira
{"title":"Effect of the position of parallelogram ribs in micro channel on heat transfer using diamond nanoparticles","authors":"Kamel Chadi, N. Belghar, M. Falek, Z. Driss, B. Guerira","doi":"10.30544/537","DOIUrl":"https://doi.org/10.30544/537","url":null,"abstract":"In the present work, we have studied numerically three dimensions, the impact of the position of parallelogram ribs in a micro-channel on thermal exchange. In this study, we proposed three cases of micro-channel heat sinks with parallelogram ribs. As well as one case without ribs, in each of the three cases, we varied the parallelogram rib positions on the micro-channel. The main purpose of this study is to find the best position for parallelograms ribs in which the heat dissipation is useful for improving the thermal performance of the micro-channel as well as improving the cooling of electronic components. We have chosen silicon micro-channel drains for four cases. Constant heat flux is applied to the bottom surfaces and using a nanofluid diamond-water with 5% volume concentration of diamond nanoparticle as a coolant. The simulation has been carried out using the commercial software ANSYS-Fluent. Reynolds number (Re) has been taken between 200 and 400 with the corresponding inlet velocity from 1.53 m/s to 3.01 m/s, and the flow regime has been assumed to be stationary. The numerical results show that the parallelogram ribs position of the micro-channel in the second case gave an improvement in heat exchange, where the Nusselt number is higher than in the other cases, and showed a reduction in the temperature of the heated bottom wall compared to the other cases. Also, the micro-channel shape in the second case can be used to cool the electronic components. The results also showed that with increasing Reynolds number (Re), the friction factor of the micro-channel decreases in all cases. At the same time, we Corresponding author: Kamel Chadi, chadikamel_dz@yahoo.fr xxx Metall. Mater. Eng. Vol xx (x) 202x p. xxx-xxx find the lowest value of the thermal resistance in the second case and the biggest value in the first case, base micro-channel without ribs.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"76 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80906125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Displacement Analysis of the MEMS Device","authors":"Ishak Ertugrul","doi":"10.30544/504","DOIUrl":"https://doi.org/10.30544/504","url":null,"abstract":"In this study, the displacement analysis of the microelectromechanical system (MEMS) device was performed. The current passing through the microdevice radiates heat energy as it pushes the device to the desired distance through thermal expansion. The amount of expansion varies depending on the current flowing through the device. With the designed model, the amount of current required for the displacement of the MEMS device is determined. In addition, the displacements produced in the microdevice for different metallic materials (silver and gold) and input potentials (0.4 V, 0.8 V, and 1.2 V) were calculated. These types of materials are frequently preferred in MEMS technology due to their high conductivity. Increasing the voltage value as a result of the analysis studies increased the displacement of the materials. When 1.2V voltage is applied, the highest displacement values for silver and gold are; 6.45 μm, 4.32 μm, respectively. According to the results, the silver material showed a significant displacement compared to gold material.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74401194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}