{"title":"Calibration of reference torque transducer in one direction and use of its cubic coefficients in both directions with improved interpolation error","authors":"","doi":"10.24425/mms.2022.142272","DOIUrl":"https://doi.org/10.24425/mms.2022.142272","url":null,"abstract":"The current research work presents an investigation into use of the fitting coefficients resulting from the cubic curve fitting of the torque transducer calibration results in one direction to calculate the actual torque in the other torque direction with two methods: one is direct substitution with the nominal torque which gives a propagated linear relative interpolation error and the other is changing the sign of the second coefficient in the cubic function when using in the other torque direction. This proposed modification improves the absolute relative interpolation error by 5 to 16 times in the clockwise and counterclockwise directions based on the torque transducer’s classification.","PeriodicalId":18394,"journal":{"name":"Metrology and Measurement Systems","volume":"39 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Disassembly-free metrological control of analog-to-digital converter parameters","authors":"","doi":"10.24425/mms.2022.143068","DOIUrl":"https://doi.org/10.24425/mms.2022.143068","url":null,"abstract":"The authors update the issue disassembly-free control and correction of all components of the error of measuring channels with multi-bit analog-to-digital converters (ADCs). The main disadvantages of existing methods for automatic control of the parameters of multi-bit ADCs, in particular their nonlinearity, are identified. Methods for minimizing instrumental errors and errors caused by limited internal resistances of closed switches, input and output resistances of active elements are investigated. The structures of devices for determining the multiplicative and nonlinear components of the error of multi-bit ADCs based on resistive dividers built on single-nominal resistors are proposed and analyzed. The authors propose a method for the correction of additive, multiplicative and nonlinear components of the error at each of the specified points of the conversion range during non-disassembly control of the ADC with both types of inputs. The possibility of non-disassembly control, as well as correction of multiplicative and nonlinear components of the error of multi-bit ADCs in the entire range of conversion during their on-site control is proven. ADC error correction procedures are proposed. These procedures are practically invariant to the non-informative parameters of active structures with resistive dividers composed of single-nominal resistors. In the article the prospects of practical implementation of the method of error correction during non-dismantling control of ADC parameters using the possibilities provided by modern microelectronic components are shown. The ways to minimize errors are proposed and the requirements to the choice of element parameters for the implementation of the proposed technical solutions are given. It is proved that the proposed structure can be used for non-disassembly control of multiplicative and nonlinear components of the error of precision instrumentation amplifiers.","PeriodicalId":18394,"journal":{"name":"Metrology and Measurement Systems","volume":"39 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using conditional averaging of delayed signals to measure phase shift angle","authors":"","doi":"10.24425/mms.2022.143064","DOIUrl":"https://doi.org/10.24425/mms.2022.143064","url":null,"abstract":"Anovelmeasurementmethodandabriefdiscussionofbasiccharacteristicsofmeasuringthephaseshiftanglebetweentwosinusoidalsignalsofthesamefrequencyarepresentedinthispaper.Itcontainsamathematical modelforusingconditionalaveragingofadelayedsignalinterferedwithnoisetomeasurethephase shiftangle.Italsoprovidescharacteristicsofconditionalmeanvaluesanddiscussestheeffectofrandom interferencesontheaccuracyofthephaseshiftmeasurement.Thewaytodeterminethevarianceofthe conditionalmeanvalue,togetherwiththeassessmentofstandardandexpandeduncertainty,aredescribed. Theuncertaintycharacteristicshowsthecomplementarypropertiesofthediscussedanglemeasurement principle 𝜑 for small absolute values | 𝜑 | (minimum for 𝜑 = 0) relative to the correlation principle, where the minimum measurement uncertainty is present for 𝜑 = 𝜋 / 2.","PeriodicalId":18394,"journal":{"name":"Metrology and Measurement Systems","volume":"38 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metrological investigation and calibration of reference standard block for ultrasonic non-destructive testing","authors":"","doi":"10.24425/mms.2022.142271","DOIUrl":"https://doi.org/10.24425/mms.2022.142271","url":null,"abstract":"Ultrasonic Non-Destructive Testing (NDT) is a powerful tool used for testing, verification, and inspection of material, especially for quality control and assurance. The key applications are the identification of flaws, cracks, irregularities, defects, and estimation of material thickness. The standard documents available for ultrasonic NDT are used as a guideline for the specifications and certification of the calibration reference standard block (RSB). The method for metrological characterization of the testing blocks is not specifically addressed in standard documents and is left to the wisdom of metrologists working in the ultrasonic calibration laboratories to adopt the suitable one. The ultrasonic flaw detector (UFD) is used most widely in ultrasonic NDT. The International Institute of Welding (IIW) V1 RSB standard is used as a reference to ascertain the functionalities of UFDs. In this article, we have proposed a new methodology for calibration of RSB and evaluation of associated measurement uncertainty along with influencing parameters. The proposed method conforms to the international standard ISO 2400:2012 and Indian standard IS 4904:2006 for validation purposes. According to these standards, the clauses for RSB e.g., dimension and quality of material have been examined. The expanded measurement uncertainty in thickness, ultrasonic longitudinal velocity, ultrasonic attenuation, parallelism and perpendicularity is ± 0 . 068 mm, ± 6 . 70 m/s, ± 0 . 22 dB, and ± 0 . 066 mm, respectively. The measurement uncertainty of these parameters is well within as per clauses stipulated in the standard documents except the ultrasonic longitudinal velocity for the IS standards.","PeriodicalId":18394,"journal":{"name":"Metrology and Measurement Systems","volume":"40 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis and application of real-time compensation of positioning precision of the turntable with a harmonic function","authors":"","doi":"10.24425/mms.2022.142269","DOIUrl":"https://doi.org/10.24425/mms.2022.142269","url":null,"abstract":"In order to guarantee the accuracy of turntable angle measurement, a real-time compensation method for turntable positioning precision based on harmonic analysis is proposed in this paper. Firstly, the principle and feasibility of the real-time compensation method are analysed, and a detailed description of harmonic compensation is provided herein. Secondly, we analyse the relationships between the surface number of the polygon with the compensation order of the harmonic function and its corresponding compensation accuracy. The effects of the iterations number and the data width on calculation accuracy in the coordinate rotation digital computer (CORDIC) algorithm are analysed and the quantization models of the approximation error and rounding error of the CORDIC algorithm are established. Then, the calculation of the harmonic error function and real-time compensation processes are implemented on a field programmable gate array (FPGA) chip. The resource occupation and time delay of the phase angle calculation and the harmonic component calculation are discussed separately. Finally, the validity of the harmonic compensation method is proven through comparing the compensation effect with that of linear interpolation and the polynomial compensation method. The influences of the compensation order, the iterations number and the data width on the compensation results are demonstrated by simulation. A test platform with a laboratory-made FPGA circuit is built to evaluate the effect of real-time compensation with the harmonic function and the positioning error compensation can be performed within 760 ns. The results confirmed the effectiveness of the harmonic compensation method, revealing an improvement of the positioning precision from 54 . 21 (cid:48)(cid:48) to 1 . 63 (cid:48)(cid:48) , equivalent to 96.99% reduction in positioning error.","PeriodicalId":18394,"journal":{"name":"Metrology and Measurement Systems","volume":"40 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of a commercial high resistance bridge and methods to improve its precision","authors":"","doi":"10.24425/mms.2022.142276","DOIUrl":"https://doi.org/10.24425/mms.2022.142276","url":null,"abstract":"At the National Institute of Metrological Research (INRIM) an evaluation of a commercial dual source high resistance bridge has been performed. Its two main measurement modes (single measurements and multiple measurements) have been investigated. The best settle time of a 10:1 measurement of high resistance ratio has been estimated to be about three times the time constant of the circuit involving the resistors. This constant, in turn, depends on the highest value resistor. By means of mathematical estimators, suitable numbers of the readings of the detector have been established in order to minimize noises. A compatibility test at 100 T Ω has shown that the best precision of the commercial bridge is achieved utilizing the multiple measurements mode with the auto update function. This mode also allows the characterization of a resistor as a function of the settle time. This characterization can be useful for the owner of the resistor who can request the laboratory to perform the calibration of the resistor with the settle time which is necessary for him.","PeriodicalId":18394,"journal":{"name":"Metrology and Measurement Systems","volume":"40 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel method of elimination of light polarization cross sensitivity on tilted fiber Bragg grating bending sensor","authors":"","doi":"10.24425/mms.2022.143066","DOIUrl":"https://doi.org/10.24425/mms.2022.143066","url":null,"abstract":"ThearticleshowsthepossibilityofusingTFBGgratingstomeasuretheradiusofcurvatureoffiberbendinginconditionsofvariablepolarizationoftheintroducedlight.Mostofthemodern,stablelightsourcesgenerate lightwithahighdegreeofpolarization.Duetothespatialasymmetry,thedirectionofthelightpolarization planeaffectsthespectralparametersofindividualmodes.Forthisreason,inthemeasurementsystemsusing TFBGspresentedsofaritbecomesnecessarytodetermineandcontrolthestateoflightpolarizationdirectly infrontoftheperiodicstructure.Thearticlepresentsthedeterminedspectralparametersofthecladding modeswhichallowbendingmeasurementsregardlessofthedirectionofpolarizationoftheintroduced light.Thankstothis,themeasuringsystemcanbeconstructedwithoutprovidingcontroloftheintroduced lightpolarizationangle,whichmakesitsconstructionsimpler.WhenusingTFBGswithanangleof2 ◦ , the accuracy of determining the bending radius in the range from 15 mm to 30 mm when changing the angle of the plane of polarization in the full range is 0.318 mm in the case of changes in the transmission coefficient. For changes in the wavelength of the selected cladding mode, the accuracy is 0.3203 mm, with the input light polarization being changed in the range from 0 ◦ (P type) to 90 ◦ (S type).","PeriodicalId":18394,"journal":{"name":"Metrology and Measurement Systems","volume":"39 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and evaluation of a low-cost solar simulator and measurement system for low-power photovoltaic panels","authors":"","doi":"10.24425/mms.2022.143067","DOIUrl":"https://doi.org/10.24425/mms.2022.143067","url":null,"abstract":"Research related to photovoltaic panels comprises different topics starting with modelling solar cells, finding new maximum power point tracking (MPPT) algorithms, testing existing ones or designing of DC/DC converters for MPPT systems and microgrids that incorporate photovoltaic energy sources. In each of the examples above a deep knowledge of photovoltaic panels is required, as well as a reliable measurement system that can deliver continuous, stable light with enough power to meet standard test conditions (STC) and that can ensure repeatable results. Therefore this paper presents a low-cost solar simulator with a microcontroller-based measurement system, that can be used for various measurements of low-power photovoltaic panels.","PeriodicalId":18394,"journal":{"name":"Metrology and Measurement Systems","volume":"38 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of semi-automated calibration system for pressure balances","authors":"","doi":"10.24425/mms.2022.143073","DOIUrl":"https://doi.org/10.24425/mms.2022.143073","url":null,"abstract":"In this study, a digital manometer was used as a transfer standard to perform calibration of a pneumatic pressure balance. The same pressure balance was calibrated with the cross-floating method based on falling rate determination (FRD). Average of differences among the effective area results show an agreement of less than 10 ppm between the digital manometer-assisted calibration (DMAC) method and the FRD method. The method in which a digital pressure gauge is used as a transfer standard not only facilitates calibration but also enables the automation of pressure balance calibration. Full automation of pressure balance calibration requires an automatic mass loading system for both the reference instrument and the device under test. Since there is a lot of different kinds of pressure balances, it is nearly impossible for a pressure metrology laboratory to have an automatic mass-handler system for every type of pressure balance. Therefore, a more efficient way in which automated mass-handler systems are not required 𝑖.𝑒. , a semi-automatic calibration system, is designed. For that purpose, two different calibration procedures, increasing-decreasing cycles, and pressurize-vent (P-V) procedures are performed and compared. The equivalence of procedure results makes the semi-automated calibration design of pressure balances possible. The most distinguishing advantages of a semi-automated calibration system are the applicability to any type of pressure balance and low cost compared to full automation","PeriodicalId":18394,"journal":{"name":"Metrology and Measurement Systems","volume":"40 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}