{"title":"Differentiation of the Generation Potential of the Menilite and Istebna Beds of the Silesian Unit in the Carpathians Based on a Compiled Pyrolytic Studies","authors":"I. Matyasik, M. Labus, M. Kierat, K. Spunda","doi":"10.2139/ssrn.3870968","DOIUrl":"https://doi.org/10.2139/ssrn.3870968","url":null,"abstract":"The study of the source rocks was carried out with the use of various analytical methods in order to assess their generation potential and to predict the decomposition products of organic matter. The selected samples from the Menilite Beds from the Silesian and Dukla units, as well as the Istebna layers from the Silesian unit, which are classified as weak and medium source rocks in the Carpathian oil system, were examined. The generation potential and type of the products obtained from the pyrolysis of the analyzed source rocks, despite the often comparable overall content of organic matter, are significantly different. Menilite shale generated a higher abundance of hydrocarbons (alkanes, alkenes, and isoalkanes) by stage pyrolysis, which suggested that the organic matter of Menilite shale is different from the Istebna source rocks. Moreover, the thermogravimetric analysis showed a two-stage weight loss in the case of Menilite shales, while the Istebna shales were characterized by a one-stage weight loss at higher temperature. For the Istebna layers, n-alkanes from the C1–C5 range were detected as the main pyrolysis products, which proves the gas-forming type of the organic matter dispersed in these sediments. Rock-Eval analyses showed that the organic matter reached a degree of maturity corresponding to the early thermocatalytic processes (the initial oil window stage) and therefore was able to generate liquid and gaseous hydrocarbons. The comparison of the decomposition temperatures of the organic matter from the Rock-Eval and TG analyses allowed us to conclude that both measurements correlate well and can be equally used to assess the level of thermal transformations of organic matter.","PeriodicalId":18341,"journal":{"name":"Materials Science eJournal","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85673887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Klemm, Mira Behnke, Jana I. Solomun, Colin Bonduelle, S. Lecommandoux, Anja Traeger, S. Schubert
{"title":"Self-Assembled PEGylated Amphiphilic Polypeptides for Gene Transfection","authors":"P. Klemm, Mira Behnke, Jana I. Solomun, Colin Bonduelle, S. Lecommandoux, Anja Traeger, S. Schubert","doi":"10.2139/ssrn.3849029","DOIUrl":"https://doi.org/10.2139/ssrn.3849029","url":null,"abstract":"In the present study, three biodegradable block copolymers composed of a poly(ethylene glycol) block and a copolypeptide block with varying compositions of cationic L-lysine (L-Lys) and hydrophobic benzyl-L-glutamate (Bzl-L-Glu) were designed for gene delivery applications. The polypeptides were synthesized by ring opening polymerization (ROP) and after orthogonal deprotection of Boc-L-Lys side chains, the polymer exhibited an amphiphilic character. To bind or encapsulate plasmid DNA (pDNA), different formulations were investigated: a nanoprecipitation and an emulsion technique using various organic solvents as well as an aqueous pH-controlled formulation method. The complex and nanoparticle (NP) formations were monitored by dynamic light scattering (DLS), and pDNA interaction was shown by gel electrophoresis and subsequent controlled release with heparin. The polypeptides were further tested for their cytotoxicity as well as biodegradability. The complexes and NPs presenting the most promising size distributions and pDNA binding ability were subsequently evaluated for their transfection efficiency in HEK293T cells. The highest transfection efficiencies were obtained with an aqueous formulation of the polypeptide containing the highest L-Lys content and lowest proportion of hydrophobic, helical structures (P1*), which is therefore a promising candidate for efficient gene delivery by biodegradable gene delivery vectors.","PeriodicalId":18341,"journal":{"name":"Materials Science eJournal","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90185269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Fujie, S. Harada, H. Suo, B. Raghothamachar, M. Dudley, K. Hanada, H. Koizumi, Tomohisa Kato, M. Tagawa, T. Ujihara
{"title":"Immobilization of Partial Dislocations Bounding Double Shockley Stacking Faults in 4h-Sic Observed by in Situ Synchrotron X-Ray Topography","authors":"F. Fujie, S. Harada, H. Suo, B. Raghothamachar, M. Dudley, K. Hanada, H. Koizumi, Tomohisa Kato, M. Tagawa, T. Ujihara","doi":"10.2139/ssrn.3844697","DOIUrl":"https://doi.org/10.2139/ssrn.3844697","url":null,"abstract":"The expansion of double Shockley stacking faults (DSFs) in an n-type 4H-SiC substrate with a nitrogen concentration of 3.9×10 19 cm −3 was investigated using in situ synchrotron X-ray topography. DSF expansion was observed to be suppressed and immobilized above 1590 K, along with the partial dislocation (PD) shape being changed from a straight to zig-zag configuration. For a different heating process (higher heating rate), the PDs could continue to expand, even above 1590 K. Ex situ topography experiments revealed that the DSFs close to the specimen surface expanded widely, although those expanding toward the specimen interior became immobile. One possible mechanism for this immobilization was proposed, where the core structural changes from a Si-core to the C-core by climb motion induced by the interaction between the PDs and point defects (C interstitials).","PeriodicalId":18341,"journal":{"name":"Materials Science eJournal","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84785278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanhui Chen, Wenhan H. Zhang, Y. Zhao, Yadi Zhai, Bin Zhang, Hui Lu, Guo Yang, Luyan Yang, Ang Li
{"title":"Oxidation-Induced Rhenium Evaporation in Ni-Based Single Crystal Superalloy Thin Lamella","authors":"Yanhui Chen, Wenhan H. Zhang, Y. Zhao, Yadi Zhai, Bin Zhang, Hui Lu, Guo Yang, Luyan Yang, Ang Li","doi":"10.2139/ssrn.3860380","DOIUrl":"https://doi.org/10.2139/ssrn.3860380","url":null,"abstract":"Abstract Rhenium is the key element for improving the mechanical properties in γ/γ' structure single-crystal Ni-based superalloys, but its oxidation-induced evaporation results in a detrimental decrease in corrosion resistance. The in situ Re evaporation process of a single lamella of a high Re-containing Ni-based superalloy is recorded in an environmental transmission electron microscope. The local aggregation of Re in the inner border of the γ phase and subsequent evaporation forms channels for the accelerated oxidation of the base and other elements. The real oxidation process of Re evaporation provides detailed and essential information on corrosive gas resistance properties at the nanoscale.","PeriodicalId":18341,"journal":{"name":"Materials Science eJournal","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83329540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jihao Yu, Lai-Quan Shen, D. Şopu, B. Sun, W.H. Wang
{"title":"Critical Growth and Energy Barriers of Atomic-Scale Plastic Flow Units in Metallic Glasses","authors":"Jihao Yu, Lai-Quan Shen, D. Şopu, B. Sun, W.H. Wang","doi":"10.2139/ssrn.3831586","DOIUrl":"https://doi.org/10.2139/ssrn.3831586","url":null,"abstract":"Abstract We provide an intuitive interpretation for critical growth of an atomic-scale plastic flow unit in metallic glasses through energy conversion approach. An explicit expressions for the critical stress upon which the plastic flow unit can grow spontaneously is obtained. The growth of the atomic units is an competition process between the intrinsic configurational entropy change and the constraint effect of glassy matrix on the inelastic deformation of plastic flow unit. Our analysis shows that at the yielding point, the activation of a plastic flow unit should take the easiest path in the potential energy landscape. In this case, the change of the intrinsic configurational entropy and the elastic constraint effect contribute equally to the activation energy barrier for the plastic flow unit. Our results provide quantificational insights on the microscopic origin of the plastic yielding of glassy solids.","PeriodicalId":18341,"journal":{"name":"Materials Science eJournal","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90713397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spotlight on the Protein Corona of Liposomes","authors":"N. Onishchenko, D. Tretiakova, E. Vodovozova","doi":"10.2139/ssrn.3831024","DOIUrl":"https://doi.org/10.2139/ssrn.3831024","url":null,"abstract":"Although an established drug delivery platform, liposomes have not fulfilled their true potential. In the body, interactions of liposomes are mediated by the layer of plasma proteins adsorbed on the surface, the protein corona. The review aims to collect the data of the last decade on liposome protein corona, tracing the path from interactions of individual proteins to the effects mediated by the protein corona in vivo. It offers a classification of the approaches to exploitation of the protein corona-rather than elimination thereof-based on the bilayer composition-corona composition-molecular interactions-biological performance framework. The multitude of factors that affect each level of this relationship urge to the widest implementation of bioinformatics tools to predict the most effective liposome compositions relying on the data on protein corona. Supplementing the picture with new pieces of accurately reported experimental data will contribute to the accuracy and efficiency of the predictions.","PeriodicalId":18341,"journal":{"name":"Materials Science eJournal","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86574204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"When is a Lattice Not a Lattice? The changing meaning of the term lattice in crystallography and physics","authors":"R. Palgrave, E. Tobin","doi":"10.2139/ssrn.3857643","DOIUrl":"https://doi.org/10.2139/ssrn.3857643","url":null,"abstract":"The concept of the lattice is central to the understanding of crystalline solids. However, usage of this word can very often differ between crystallographers, for whom a lattice is a mathematical object that describes the symmetry of a crystal, and physicists and chemists, for whom lattice is commonly used as a word for a regular array of particles. The similarity between the two definitions means they can easily be confused by students or inexperienced practitioners, but the fundamental differences can make the consequences of such confusion significant, an issue rarely tackled directly in popular textbooks. Here we examine the historical roots of this problem of context, and the changing understanding of the word ‘lattice’ over time. While the origins of the term lattice lie with the 19th century mathematical crystallographers, their usage, both in terms of the words used and their meanings, was fluid, and no strong distinction between the lattice and the physical components of a crystal was made. Leading crystallographers in the early 20th century regularly used the word lattice in a way that is unacceptable to some of their modern counterparts. We identify the decade after 1910 as the start of divergence between the physical and crystallographic meaning, catalysed by the discovery of X-ray diffraction and the development of lattice dynamics, although the current definitions did not become entrenched until the 1940s. While history has shown us that this classificatory issue is not just a matter of scientific disagreement and perhaps at its root is a disagreement in our understanding of classification itself. Lastly, we discuss possible resolutions to the matter.","PeriodicalId":18341,"journal":{"name":"Materials Science eJournal","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81432171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eden Kapcan, Benjamin P M Lake, Zi Yang, A. Zhang, Matthew S. Miller, A. Rullo
{"title":"Covalent Stabilization of Antibody Recruitment Enhances Immune Recognition of Cancer Targets","authors":"Eden Kapcan, Benjamin P M Lake, Zi Yang, A. Zhang, Matthew S. Miller, A. Rullo","doi":"10.2139/ssrn.3773889","DOIUrl":"https://doi.org/10.2139/ssrn.3773889","url":null,"abstract":"Antibody recruiting molecules (ARMs) represent an important class of \"proximity-inducing\" chemical tools with therapeutic potential. ARMs function by simultaneously binding to a hapten-specific serum antibody (Ab) (e.g., anti-dinitrophenyl (DNP)) and a cancer cell surface protein, enforcing their proximity. ARM anticancer efficacy depends on the formation of ARM:Ab complexes on the cancer cell surface, which activate immune cell recognition and elimination of the cancer cell. Problematically, ARM function in human patients may be limited by conditions that drive the dissociation of ARM:Ab complexes, namely, intrinsically low binding affinity and/or low concentrations of anti-hapten antibodies in human serum. To address this potential limitation, we previously developed a covalent ARM (cARM) chemical tool that eliminates the ARM:antibody equilibrium through a covalent linkage. In the current study, we set out to determine to what extent maximizing the stability of ARM:antibody complexes via cARMs enhances target immune recognition. We observe cARMs significantly increase target immune recognition relative to ARMs across a range of therapeutically relevant antibody concentrations. These results demonstrate that ARM therapeutic function can be dramatically enhanced by increasing the kinetic stability of ARM:antibody complexes localized on cancer cells. Our findings suggest that a) high titres/concentrations of target antibody in human serum are not neccessary and b) saturative antibody recruitment to cancer cells not sufficient, to achieve maximal ARM therapeutic function.","PeriodicalId":18341,"journal":{"name":"Materials Science eJournal","volume":"36 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72621340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Kirschner, W. Mayr-Schmölzer, J. Bernardi, Robert Gaschl, S. Schwarz, C. Simson, G. Vonbun-Feldbauer, C. Eisenmenger-Sittner
{"title":"Characterization of an Al-Cu-Mg-Zn Multi Principal Element Alloy by Experimental and Computational Screening Methods","authors":"J. Kirschner, W. Mayr-Schmölzer, J. Bernardi, Robert Gaschl, S. Schwarz, C. Simson, G. Vonbun-Feldbauer, C. Eisenmenger-Sittner","doi":"10.2139/ssrn.3830978","DOIUrl":"https://doi.org/10.2139/ssrn.3830978","url":null,"abstract":"We present a combined experimental and computational investigation of phase stability and mechanical properties in the Al-Cu-Mg-Zn quaternary system. Samples containing different relative compositions were prepared using magnetron sputtering and investigated by electron microscopic and X-ray based methods. To classify the technical relevance of the samples, the indentation hardness was measured. The phase stability was studied computationally using a cluster expansion approach based on density functional theory (DFT) methods to allow for a comprehensive screening of the configuration space. Upon decreasing Cu concentration, a transition from an fcc to a mixed fcc/bcc crystal system and significant changes in the mechanical properties depending on Valence Electron Concentration (VEC) and atomic size differences (δr) was observed experimentally. The corresponding crystallographic phases were assigned by XRD and the experimentally observed phase transition could be confirmed by computing formation energies for the corresponding ground-state structures. Since to date, quaternary complex light metal alloy systems cannot be reliably predicted, this is an important step towards a priori modelling of this class of materials.","PeriodicalId":18341,"journal":{"name":"Materials Science eJournal","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89520140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ensieh Yousefi, Youqing Sun, Anil Kunwar, M. Guo, N. Moelans, D. Seveno
{"title":"Surface Tension of Aluminum Oxide: A Molecular Dynamics Study","authors":"Ensieh Yousefi, Youqing Sun, Anil Kunwar, M. Guo, N. Moelans, D. Seveno","doi":"10.2139/ssrn.3828267","DOIUrl":"https://doi.org/10.2139/ssrn.3828267","url":null,"abstract":"Despite the fact that aluminum is one of the most commonly-used elements, experimental results on the value of its surface tension are largely scattered due to the high sensitivity of aluminum to the atmospheric conditions, leading to huge experimental challenges. In this study, the surface tension of pure Al and Al-O systems was studied in detail using Molecular Dynamics (MD) simulations. A force field that includes embedded atoms method and charge transfer ionic potential was applied to account for interatomic interactions. Simulations were performed at different temperatures (1000-2200 K) with different initial oxygen contents. The simulations allowed us to elucidate the effects of well-controlled atmospheric conditions on surface tension. Our results show that the surface tension of aluminum is sensitive to the amount of oxygen content at the surface, which depends on the total oxygen content and the temperature. At different temperatures, different amounts of oxygen atoms are needed to saturate the aluminum surface ( XSAT0 ). A relationship between XSAT0 and temperature was derived. Due to the scattered data in the literature, a new experiment was performed to measure the surface tension of pure aluminum at two different temperatures. Our MD simulations show a good agreement with these experimental results. We believe that this study can shed light on the underlying mechanisms controlling surface tension of aluminum and could offer routes to better engineer the surface properties of this liquid metal.","PeriodicalId":18341,"journal":{"name":"Materials Science eJournal","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87165323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}