{"title":"Correction to “A Comprehensive Analysis of Electronic Transitions in Naphthalene and Perylene Diimide Derivatives Through Computational Methods”","authors":"","doi":"10.1002/qua.27473","DOIUrl":"https://doi.org/10.1002/qua.27473","url":null,"abstract":"<p>W. Hussain, M. S. Iqbal, H. Li, M. Sulaman, H. Guo, C. Li, Y. Sandali, A. Irfan, and H. S. Ali, “A Comprehensive Analysis of Electronic Transitions in Naphthalene and Perylene Diimide Derivatives Through Computational Methods,” <i>International Journal of Quantum Chemistry</i> 124, no. 1 (2024): e27223, 10.1002/qua.27223.</p><p>During the assembly of Figure 27, the image intended to represent Figure D was incorrectly replaced by a duplicate of Figure E. This resulted in the erroneous presentation of Figure E twice and the omission of the correct Figure D.</p><p>Additionally, a statement from Section 2.2 Computational Detail needs to be changed from: “The DOS data were shown using PyMOlyze 1.1, and the electron densities were calculated using Multiwfn 3.7 [43].” to “The DOS data were shown using PyMOlyze 1.1, and the electron density maps and non-covalent interaction (NCI) plots were generated using Multiwfn 3.7 [43] and visualized using VMD software (Ref. W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual Molecular Dynamics,” <i>Journal of Molecular Graphics</i> 14, no. 1 (1996): 33–38, 27–38.).”</p><p>We apologize for this error.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 17","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qua.27473","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ekaterina G. Ragoyja, Vitaly E. Matulis, Oleg A. Ivashkevich, Dmitry A. Lyakhov, Dominik Michels
{"title":"Computationally Effective Approach for Studies of Mechanism and Thermodynamics of Heterogeneous Catalytic Processes on Metal Oxides","authors":"Ekaterina G. Ragoyja, Vitaly E. Matulis, Oleg A. Ivashkevich, Dmitry A. Lyakhov, Dominik Michels","doi":"10.1002/qua.27470","DOIUrl":"https://doi.org/10.1002/qua.27470","url":null,"abstract":"<div>\u0000 \u0000 <p>To understand the nature of heterogeneous catalytic processes and improve their efficiency, it is necessary to conduct both experimental and theoretical studies. At the same time, there is no unified approach to obtaining the necessary data using quantum chemistry methods. In this work, problems of the existing calculational approaches are analyzed. The obtained information is used to develop the original three-layer embedded cluster model approach, which is shown to be the most effective. The general algorithm for obtaining such models for various oxides is formulated. The sufficient accuracy of the proposed models in predicting geometric and energy characteristics, vibrational frequencies, activation barriers, and thermodynamic characteristics is verified. The specifics of calculating the thermodynamic characteristics of heterogeneous processes using the proposed cluster models is studied in detail. The developed approach is an effective tool for studying the mechanism of heterogeneous catalytic processes both by itself and in combination with experiment.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 17","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. D. Ahmed, E. S. Eyube, S. D. Najoji, P. U. Tanko, C. A. Onate, E. Omugbe, B. D. Mohammed, C. R. Makasson, E. H. Mshelia
{"title":"Thermomagnetic Models for the Improved Rosen–Morse Oscillator","authors":"A. D. Ahmed, E. S. Eyube, S. D. Najoji, P. U. Tanko, C. A. Onate, E. Omugbe, B. D. Mohammed, C. R. Makasson, E. H. Mshelia","doi":"10.1002/qua.27463","DOIUrl":"https://doi.org/10.1002/qua.27463","url":null,"abstract":"<div>\u0000 \u0000 <p>This study solves the radial Schrödinger wave equation (RSWE) with the improved Rosen–Morse (IRM) potential constrained by an electromagnetic field. Energy eigenvalues are derived using the parametric Nikiforov–Uvarov method and Pekeris approximation. The internal partition function, isobaric molar heat capacity formula, and magnetization model are then deduced from the equation governing pure vibrational energy states. These analytical models are applied to several pure substances, specifically Br<sub>2</sub> (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), BrF (X <sup>1</sup>Σ<sup>+</sup>), ICl (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), and P<sub>2</sub> (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>) molecules. Numerical approximations of the energy eigenvalues for these molecules closely match their exact values. The isobaric molar heat capacity expression yields mean percentage absolute deviations of 1.6585%, 0.9162%, 1.2193%, and 0.7232% when compared against experimental data for Br<sub>2</sub> (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), BrF (X <sup>1</sup>Σ<sup>+</sup>), ICl (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), and P<sub>2</sub> (X <sup>1</sup>Σ<sub>g</sub><sup>+</sup>), respectively. These results align well with other heat capacity models in existing literature.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 17","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computational Study of Noncovalent Interactions on Addition of Small Molecule Units With Benzenoid Aromatic Rings","authors":"Rohan Sharma, Chayanika Kashyap, Drishti Baruah, Ilakshi Baruah, Pankaz K. Sharma","doi":"10.1002/qua.27466","DOIUrl":"https://doi.org/10.1002/qua.27466","url":null,"abstract":"<div>\u0000 \u0000 <p>Experimental and theoretical studies over the recent years have shown that noncovalent interactions play a crucial role in diverse chemical and biological processes. Noncovalent interactions have been recognized as significantly contributing towards stabilizing various supramolecular species. We have attempted to interpret computationally the nature of various noncovalent interactions between the aromatic surfaces of 6-phenyl-1,3,5-triazine and biphenyl with polar as well as non-polar molecules such as H<sub>2</sub>O, HCl, HF, CO<sub>2</sub>, and so forth and adding the inter-aromatic rings π-stacking, using the r<sup>2</sup>SCAN-3c/DEF2-mTZVPP model chemistry. Energy decomposition analysis with the SAPT method shows that the electrostatics and dispersion components play crucial roles in stabilizing these complexes whereas induction and polarization play minor roles.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 17","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optical Response of a Position-Dependent Optomechanical System With N-Type Four-Level Atoms","authors":"A. Qayyum","doi":"10.1002/qua.27469","DOIUrl":"https://doi.org/10.1002/qua.27469","url":null,"abstract":"<div>\u0000 \u0000 <p>Cavity optomechanics explores the interaction between light and mechanical systems through radiation pressure. This interdisciplinary field merges principles from quantum mechanics and quantum optics provides powerful tools for generating and controlling quantum states. In this research, we theoretically investigated a four-level <i>N</i>-atomic system within the context of optomechanics. The oscillating mirror possesses a mass that varies with position and exhibits a singularity. We analyzed the dynamics using Heisenberg–Langevin equations and calculated steady-state solutions, studied optical response through both analytical and numerical methods. The main focus of this study was optical response within the domain of position-dependent effective mass. Our findings revealed that the output field representing transmission exhibits variations and shift with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>α</mi>\u0000 </mrow>\u0000 <annotation>$$ alpha $$</annotation>\u0000 </semantics></math>, the nonlinear parameter of the position dependent effective mass. These variations not only impact transmission but also alter the dispersion and phase of the output field.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 16","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Aditya Abimanyu, Niko Prasetyo, Mokhammad Fajar Pradipta
{"title":"Unveiling the Structure and Dynamics of Ac3+ Ion in Aqueous Solution: Insight From Relativistic Hybrid Forces Molecular Mechanics Molecular Dynamics Simulations","authors":"Muhammad Aditya Abimanyu, Niko Prasetyo, Mokhammad Fajar Pradipta","doi":"10.1002/qua.27464","DOIUrl":"10.1002/qua.27464","url":null,"abstract":"<div>\u0000 \u0000 <p>This work describes a molecular dynamics simulation study (MP2-DKH2/MM) that explores the structural and dynamical properties of hydrated Ac<sup>3+</sup> ions in an aqueous solution. Simulation results indicate that the ion formed three hydration shells. The hydrated Ac<sup>3+</sup> had a first hydration shell comprising 8–9 water molecules. It showed similar probabilities for both coordination numbers, showing a flexible first hydration shell with eight registered successful ligand exchanges during the simulation. The water molecules' mean residence times (MRT) in the first, second, and third hydration shells were 131.8, 6.46, and 2.67 ps, respectively. The complexes of octahydrate ([Ac(H₂O)₈]<sup>3+</sup>) and nonahydrate ([Ac(H₂O)₉]<sup>3+</sup>) were observed in the first hydration shell. The square antiprism (SA) geometry was adopted for octahydrate, while the gyroelongated square antiprism (GySA) geometry was adopted for nonahydrate. The simulations provided valuable insights into the ion-oxygen stretching frequencies. Specifically, the average stretching frequency for Ac<sup>3+</sup> was found to be 404 cm<sup>−1</sup>, which is in good agreement with the calculated value from the CCSD(T) calculation of 398.78 cm<sup>−1</sup>. These findings indicate that including DKH2 relativistic approximation increases the accuracy of the simulation results and can contribute to understanding these actinide ions' behavior in aqueous environments, shedding light on hydrated systems' structural arrangements and dynamics.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 16","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141921587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low Thermal Conductivity and High Thermoelectric Figure of Merit of Two-Dimensional Ba2ZnAs2 and Ba2ZnSb2","authors":"Chenliang Xia, Xiaofei Sheng, Qin Qun, Wenyu Fang, Bilei Zhou","doi":"10.1002/qua.27465","DOIUrl":"10.1002/qua.27465","url":null,"abstract":"<div>\u0000 \u0000 <p>Thermoelectric (TE) technology can effectively alleviate energy shortage and environmental pollution problems and has thus attracted extensive attention. In this work, we designed two unexplored two-dimensional materials, Ba<sub>2</sub>ZnAs<sub>2</sub> and Ba<sub>2</sub>ZnSb<sub>2</sub>, and investigated their stability, mechanical characteristics, and TE properties using first-principles calculations and by solving the Boltzmann transport equation. We revealed that the two materials possess high stability and moderate cleavage energies of 0.84 and 0.76 J m<sup>−2</sup>. Moreover, they are indirect semiconductors with band-gaps of 1.26 and 0.97 eV and show flat energy dispersion near the valence band maximum, resulting in a high p-type Seebeck coefficient of approximately 0.72 and 0.29 mV K<sup>−1</sup> at 300 K. Furthermore, they have significant anisotropic TE power factor along the <i>a</i>- and <i>b</i>-axis, with maxima of 1.19 and 0.75 mW m<sup>−1</sup> K<sup>−2</sup> at 300 K. Owing to the strong coupling between the acoustic and optical phonons, as well as the low frequency for low-lying phonons, the materials have high phonon scattering rates and low lattice thermal conductivities of 0.54/0.52 and 0.81/0.43 W mK<sup>−1</sup> along the <i>a-</i>/<i>b</i>-axis. Ultimately, Ba<sub>2</sub>ZnAs<sub>2</sub> and Ba<sub>2</sub>ZnSb<sub>2</sub> can deliver high-performance TE transport with high figures-of-merit of 0.32 and 0.19 at 300 K, which increase further to 1.67 and 0.91, respectively, at 700 K.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 16","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141922479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Iyakutti, Rence P. Reji, K. Ajaijawahar, I. Lakshmi, R. Rajeswarapalanichamy, V. J. Surya, A. Karthigeyan, Y. Kawazoe
{"title":"Interaction of H, H2, and MgH2 With Graphene and Possible Application to Hydrogen Storage—A Density Functional Computational Investigation","authors":"K. Iyakutti, Rence P. Reji, K. Ajaijawahar, I. Lakshmi, R. Rajeswarapalanichamy, V. J. Surya, A. Karthigeyan, Y. Kawazoe","doi":"10.1002/qua.27467","DOIUrl":"10.1002/qua.27467","url":null,"abstract":"<div>\u0000 \u0000 <p>The interaction of H, H<sub>2</sub>, and MgH<sub>2</sub> with graphene is investigated using the density functional theory to explore the possibility of exploiting graphene or functionalized graphene as a hydrogen storage medium. The H atom is positioned at various distances from the graphene surface and the energetics are computed in detail. The extent of interaction of the s electron of H with graphene's p<sub>z</sub> electrons is well brought out. Similar investigations are carried out for H<sub>2</sub>, MgH<sub>2</sub>. In the case of H atom, a H<span></span>C covalent bond is formed. This process turns out to be a prerequisite for proton transfer through graphene. Interactions of H<sub>2</sub> and MgH<sub>2</sub> with graphene are different from that of H. It leads to the conclusion that functionalized graphene will better substrate/candidate for applications like hydrogen storage.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 16","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141925279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexey N. Masliy, Ildar G. Akhmetov, Andrey M. Kuznetsov, Ilsiya M. Davletbaeva
{"title":"Effect of DFT Methods and Dispersion Correction Models in ONIOM Methodology on the Activation Energy of Butadiene Polymerization on a Neodymium-Based Ziegler–Natta Catalyst","authors":"Alexey N. Masliy, Ildar G. Akhmetov, Andrey M. Kuznetsov, Ilsiya M. Davletbaeva","doi":"10.1002/qua.27462","DOIUrl":"10.1002/qua.27462","url":null,"abstract":"<div>\u0000 \u0000 <p>In present work, using the double layer ONIOM methodology, we simulated the stages of initiation and growth of the polymer chain during the polymerization of butadiene on a neodymium-based Ziegler–Natta catalyst. The DFT methods B3LYP and PBE0 in combination with the Def2-TZVP atomic basis set were used as high-level methods in ONIOM. Grimme's semi-empirical XTB1 method was used as a low-level method. In our previous work, the mechanism of butadiene polymerization on a neodymium-containing Ziegler–Natta catalyst was studied in detail. The polymerization activation energy of 61 kJ/mol was found to be slightly higher than the experimentally determined values of this parameter. In the present work, the influence of a high-level method and a model of taking into account dispersion interactions on the quality of calculation of activation parameters of the polymerization reaction was studied. Experimental activation energy for the polymerization of dienes in the presence of Ziegler–Natta catalysts is in the range of 30–60 kJ/mol, but neodymium-based catalysts have an activation energy somewhat closer to the lower limit of this range. For comparison, semi-empirical Grimme models D3 and D4 were used. It has been established that the both models reveal within the B3LYP method the activation energy practically the same, while within the PBE0 method it decreases to 41 kJ/mol. Thus, using the PBE0 as a high-level method within the ONIOM methodology and taking into account dispersion interactions within the D4 model leads to results in much better agreement with experimental data.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 16","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141926214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adsorption and Gas Sensing Properties of h-BN/WS2 Heterojunction for Toxic Gases: A DFT Study","authors":"Haixia Chen, Kewei Gao, Jijun Ding, Lincheng Miao","doi":"10.1002/qua.27461","DOIUrl":"10.1002/qua.27461","url":null,"abstract":"<div>\u0000 \u0000 <p>Tungsten disulfide (WS<sub>2</sub>) and hexagonal boron nitride (h-BN) monolayer, and h-BN/WS<sub>2</sub> heterojunction with low lattice mismatch is constructed using density functional theory (DFT). The band structures, density of states (DOS), charge density differences (CDD), work function (WF), adsorption energy and adsorption distance of h-BN/WS<sub>2</sub> heterojunction for six gases molecules (CO, CO<sub>2</sub>, NO, NO<sub>2</sub>, SO<sub>2</sub>, and H<sub>2</sub>S) are systematically discussed. Gas adsorption on one-side and both-sides of the heterojunction is considered. The results indicate that the band gap of the heterojunction is lower than that of h-BN and WS<sub>2</sub>, indicating that the construction of heterojunction is beneficial for conductivity. For six gases, the adsorption energy of one-sided adsorption is significantly greater than that of both-sided adsorption, except for CO<sub>2</sub> and NO. The adsorption of NO and NO<sub>2</sub> introduces the magnetism into the system. Interestingly, the h-BN/WS<sub>2</sub> heterojunction demonstrates excellent selectivity for NO gas under one-sided and both-sided adsorption. The corresponding adsorption mechanism is explored.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 16","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141925942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}