Avanish Mishra, K. Dang, Edward M. Kober, S. Fensin, Nithin Mathew
{"title":"Role of microscopic degrees of freedom in mechanical response of bicrystal nanopillars","authors":"Avanish Mishra, K. Dang, Edward M. Kober, S. Fensin, Nithin Mathew","doi":"10.1080/21663831.2023.2252885","DOIUrl":"https://doi.org/10.1080/21663831.2023.2252885","url":null,"abstract":"This study investigated the high-strain rate deformation of bicrystal Cu nanopillars, using atomistic simulations. Nanopillars with minimum grain boundary energy were deformed to investigate the role of macroscopic degrees of freedom, finding that geometric parameters (Schmid factor) influence the stress–strain response. The deformation of metastable grain boundaries (GBs) revealed that in addition to geometric parameters, the response was also governed by the local atomic arrangement at the boundary, dictating the dislocation-GB interactions. These findings shed light on the response of nanopillars as a function of GBs and show the importance of both macroscopic and microscopic degrees of freedom on the mechanical response. GRAPHICAL ABSTRACT IMPACT STATEMENT Metastable states, an often ignored aspect of GB structure, is shown to have a strong influence on dislocation-GB interactions; shedding new light on mechanical response of realistic GBs.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"11 1","pages":"872 - 878"},"PeriodicalIF":8.3,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42193441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiajing Chen, Yuanfei Han, Zichao Wei, Shaopeng Li, Zhonggang Sun, Liang Zhang, Guangfa Huang, Jianwen Le, Di Zhang, Weijie Lu
{"title":"Heterostructured titanium composites with superior strength-ductility synergy via controllable bimodal grains and dislocation activity","authors":"Jiajing Chen, Yuanfei Han, Zichao Wei, Shaopeng Li, Zhonggang Sun, Liang Zhang, Guangfa Huang, Jianwen Le, Di Zhang, Weijie Lu","doi":"10.1080/21663831.2023.2252858","DOIUrl":"https://doi.org/10.1080/21663831.2023.2252858","url":null,"abstract":"Constructing heterostructures in particulate reinforced titanium matrix composites (PRTMCs) to evade the strength-ductility trade-off dilemma is much more difficult than in metals. Here, we proposed a novel and controllable strategy of simple powder assembly to fabricate bimodal-grained PRTMCs, this customized strategy makes coarse grains (CGs) surrounded by ultrafine-grained (UFG) matrices, conferring a superior strength-ductility combination not achievable by their traditional homogeneous counterparts. We found that such heterostructures appear to promote storage of mostly dislocations in CGs and accumulation near the CG/UFG boundaries. Moreover, hybrid reinforcements also activate multiple hardening mechanisms, inducing high ductility. GRAPHICAL ABSTRACT IMPACT STATEMENT We proposed a novel and controllable strategy of simple powder assembly to fabricate heterostructured metal matrix composites for breaking the strength-ductility trade-off dilemma and revealed the enhanced dislocation activity.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"11 1","pages":"863 - 871"},"PeriodicalIF":8.3,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43115308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A method for increasing the supersolvus critical strain for recrystallization in single-crystal superalloys","authors":"Sicong Lin, Kai Chen, Qiang Zeng, U. Ramamurty","doi":"10.1080/21663831.2023.2253267","DOIUrl":"https://doi.org/10.1080/21663831.2023.2253267","url":null,"abstract":"Recrystallization, possibly triggered during heat treatments by plastic strains of only 1–2%, is highly deleterious to Ni-based single-crystal superalloys. Herein, we successfully recover plastic deformation and enhance the supersolvus critical strain for recrystallization by ramping the annealing temperature slowly from 1100 °C to γ′-solvus point. This preempts recrystallization during the subsequent supersolvus solutionizing treatment. The proposed method is validated in single-crystals compressed to 5.9% plastic strain at room temperature. After supersolvus solutionizing, an almost dislocation-free single-crystal with uniformly distributed γ′-precipitates is obtained. The proposed method offers a practical means to bring down the overall expenses of single-crystal turbine blades. GRAPHICAL ABSTRACT IMPACT STATEMENT An optimized pre-solutionizing recovery heat treatment can elevate the critical plastic strain value for recrystallization in Ni-based superalloy single-crystals to 3 times higher than previously established.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"11 1","pages":"856 - 862"},"PeriodicalIF":8.3,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43527850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuan Zhang, Christopher P. Carter, Yashas Satapathy, A. Tekawade, J. Park, P. Kenesei, Meimei Li
{"title":"Understanding creep behaviors of additively manufactured 316L stainless steel via void characterization","authors":"Xuan Zhang, Christopher P. Carter, Yashas Satapathy, A. Tekawade, J. Park, P. Kenesei, Meimei Li","doi":"10.1080/21663831.2023.2244969","DOIUrl":"https://doi.org/10.1080/21663831.2023.2244969","url":null,"abstract":"Additively manufactured (AM) 316L stainless steel (SS) has been reported to have low creep resistance compared to its conventionally made counterparts. Herein, we quantitatively characterized the voids in a creep-ruptured AM 316L SS specimen and those in a conventional specimen ruptured under the same testing condition. The AM 316L SS contained more small creep voids and fewer large ones. 3D reconstructions showed the spatial distribution of the small voids in AM 316L SS followed the melt pool tracks, which was attributed to the grain structure unique to the laser process. The observations explained the creep behaviors of the two specimens. GRAPHICAL ABSTRACT IMPACT STATEMENT This paper reports that the grain structure resulted from the laser printing process has critical effects on the creep void formation in AM 316L SS.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"11 1","pages":"806 - 813"},"PeriodicalIF":8.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46797363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanism analysis of grain growth dominated by alloy composition gradients during powder bed fusion","authors":"Liming Yao, Zhongmin Xiao, Zhiongsheng Hoo, Chao Tang, Jing Qiao, Yanmei Zhang","doi":"10.1080/21663831.2023.2250826","DOIUrl":"https://doi.org/10.1080/21663831.2023.2250826","url":null,"abstract":"A multi-physics simulation model has been established to investigate the influence of Laser powder bed fusion parameters on the spatial composition distribution and grain growth mechanism of the single-track printed dissimilar alloys. Our study shows that alloy composition gradient isosurfaces can be used to visualize the spatial distribution of alloy composition for miscible dissimilar alloys. When the melt pool aspect ratio changes from large to small, the grain growth transitions from the temperature gradient mode to composition gradient mode and then to the mixed mode. Our experimental observations show that in extreme cases, the curved grain angle can reach 272°. GRAPHICAL ABSTRACT IMPACT STATEMENT The study found that the composition gradient of dissimilar alloys can dominate grain growth, which is entirely different from the conventional temperature gradient-dominated grain growth mechanism.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"11 1","pages":"814 - 820"},"PeriodicalIF":8.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42046733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comprehensive review of fabrication techniques and their impact on mechanical behaviour and osteoregenerative applications of bioactive inorganic substituents","authors":"K. K. Anavadya, Uthirapathy Vijayalakshmi","doi":"10.1080/21663831.2023.2250110","DOIUrl":"https://doi.org/10.1080/21663831.2023.2250110","url":null,"abstract":"Multifarious materials are used in the biomedical domain to relieve the distress of patients due to underlying diseases or injuries by replacing or augmenting any tissues or organs. Specific metallic substrates used as implants have the probability of failure due to corrosion resulting from direct contact with body fluid. Therefore, we aim to conduct a thorough review of numerous coatings currently available to prevent the implants from corroding. The coatings that are fabricated by various techniques are discussed for their effects on mechanical behaviour. It was deduced that the mechanical behaviour relied on the microstructure of the coating surface. Different surface treatment techniques of coatings offered different microstructures to the coatings. We meticulously review the mechanical and biological behaviour of coatings and this comprehensive literature review serves as evidence that the effective fabrication of an ideal coating has remained elusive for researchers, motivating an ongoing endeavour to attain this goal. IMPACT STATEMENT We meticulously review the mechanical and biological behaviour of coatings and this comprehensive literature review serves as evidence that the effective fabrication of an ideal coating along with discussions on biological characteristics shown by composites. Abbreviations: ALP, alkaline phosphatase activity, bFGF, basic fibroblast growth factor, CHAp, Carbonated Hap, CNT, carbon nanotubes, Ecorr, corrosion potential, ECM, extracellular matrix, EIS, Electrochemical Impedance Spectroscopy, EPD, electrophoretic deposition technique, F-Hap, fluorinated hydroxyapatite, f-MWCNT, functionalized multi-walled carbon nanotubes, GO, Graphene Oxide, Hap, hydroxyapatite, HAp/PE, hydroxyapatite/polyethylene, HOS, human osteosarcoma cells, Icorr, corrosion current, MWCNT, Multi-walled carbon nanotubes, PEO, plasma electrolyte oxidation, PLGA, poly(lactic-co-glycolic acid), PMMA, Poly(methyl methacrylate), PSZ, partially stabilized zirconia, rGO, reduced graphene oxide, SBF, Simulating body fluid, SWCNT, Single-walled carbon nanotubes, TCP, Tri calcium phosphate, TZP, tetragonal zirconia polycrystal, YSZ, Yttria-stabilized Zirconia, ZTA, zirconia toughened alumina GRAPHICAL ABSTRACT","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"11 1","pages":"821 - 855"},"PeriodicalIF":8.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44702005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Ding, Selami Emanet, Yeh-Peng Chen, Shengmin Guo
{"title":"The potential benefit of pseudo high thermal conductivity for laser powder bed fusion additive manufacturing","authors":"H. Ding, Selami Emanet, Yeh-Peng Chen, Shengmin Guo","doi":"10.1080/21663831.2023.2243990","DOIUrl":"https://doi.org/10.1080/21663831.2023.2243990","url":null,"abstract":"This study examined the impact of transient pseudo high thermal conductivity to the fabrication of crack-free parts with Laser Powder-Bed-Fusion (L-PBF) based additive manufacturing (AM) method. Thermal diffusivity and thermal conductivity of L-PBF samples made by mixtures of IN939 alloy and Si powders were investigated. At temperatures above 800°C, the as-fabricated Si-doped IN939 was observed to exhibit an exceptionally high thermal conductivity, which can be attributed to the occurrence of endothermic reactions. This pseudo high thermal conductivity can effectively minimize the thermal stress and offers a potential solution to produce crack-free L-PBF parts for nonweldable alloys. GRAPHICAL ABSTRACT IMPACT STATEMENT The paper proposes a potential solution for preparing crack-free L-PBF nonweldable alloys. Modifying the composition to introduce an endothermic reaction has been shown to decrease the tendency of cracking.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"11 1","pages":"797 - 805"},"PeriodicalIF":8.3,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46792582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Ait Oukaci, D. Stoeffler, M. Hehn, M. Grassi, B. Sarpi, M. Bailleul, Y. Henry, S. Petit, F. Montaigne, R. Belkhou, D. Lacour
{"title":"Oscillatory buckling reversal of a weak stripe magnetic texture","authors":"K. Ait Oukaci, D. Stoeffler, M. Hehn, M. Grassi, B. Sarpi, M. Bailleul, Y. Henry, S. Petit, F. Montaigne, R. Belkhou, D. Lacour","doi":"10.1080/21663831.2023.2238010","DOIUrl":"https://doi.org/10.1080/21663831.2023.2238010","url":null,"abstract":"By combining volume sensitive high resolution Magnetic Force Microscopy with surface sensitive X-ray Photoemission Electron Microscopy, we resolved the depth profile of a weak stripe magnetic texture and its evolution upon in-plane magnetization reversal. In contrast to previous reports, we show that the conventional weak stripe texture undergoes a well-defined undulation while the magnetic field is reversed to negative after in plane positive saturation. This transformation is strongly impacting the flux closure caps domains and a staggered Néel caps texture appears. Thanks to quantitative agreement with micro-magnetic simulations, we demonstrate that the existence of both the instability and the staggered Néel caps is intrinsic in negative applied field after positive in plane saturation. This reversal mode is characterized by a checker board pattern of alternating surface magnetic charges and by a longitudinal modulation of the in-plane component of magnetization similar to the oscillatory buckling reversal mode reported in elongated soft magnetic nanostructures. GRAPHICAL ABSTRACT IMPACT STATEMENT Zigzaging magnetic weak stripes have been observed in CoFeB thin films. The characteristics of this new magnetic texture and its origins are revealed thanks to MFM and XMCD-PEEM measurements combined to micromagnetic simulations.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"11 1","pages":"789 - 795"},"PeriodicalIF":8.3,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44018820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meng Zhang, Hailong Jia, M. Zha, Lei Zhao, Zhen-Ming Hua, Cheng Wang, Yipeng Gao, Hong Wang
{"title":"Anisotropic segregation-driven texture weakening in a dilute Mg-Al-Ca alloy during isothermal annealing","authors":"Meng Zhang, Hailong Jia, M. Zha, Lei Zhao, Zhen-Ming Hua, Cheng Wang, Yipeng Gao, Hong Wang","doi":"10.1080/21663831.2023.2237996","DOIUrl":"https://doi.org/10.1080/21663831.2023.2237996","url":null,"abstract":"Tailoring recrystallization via particle-stimulated nucleation (PSN) and pinning effects from secondary phase particles effectively weakens textures, which is still challenging for low-alloyed rare earth-free Mg alloys. Herein, the texture of a dilute cold-rolled Mg-2.2Al-0.33Ca (wt.%) alloy is found to reduce with the appearance of transverse direction (TD) texture components during static recrystallization. The texture transition is mainly attributed to the preferential growth of TD-oriented recrystallized grains, resulting from the preferential segregation of Al and Ca atoms on basal-oriented grain boundaries with low misorientation angles. The findings provide an in-depth understanding of texture modification in Mg alloys. GRAPHICAL ABSTRACT IMPACT STATEMENT The anisotropic co-segregation of Al and Ca on grain boundaries is responsible for the texture weakening of a dilute Mg-Al-Ca alloy, which provides a strategy for texture modification in such alloys.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"11 1","pages":"781 - 788"},"PeriodicalIF":8.3,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45196395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Zha, Si-Qing Wang, Tong Wang, Hailong Jia, Ya-wei Li, Zhen-Ming Hua, K. Guan, Cheng Wang, Hong Wang
{"title":"Developing high-strength and ductile Mg-Gd-Y-Zn-Zr alloy sheet via bimodal grain structure coupling with heterogeneously-distributed precipitates","authors":"M. Zha, Si-Qing Wang, Tong Wang, Hailong Jia, Ya-wei Li, Zhen-Ming Hua, K. Guan, Cheng Wang, Hong Wang","doi":"10.1080/21663831.2023.2235375","DOIUrl":"https://doi.org/10.1080/21663831.2023.2235375","url":null,"abstract":"ABSTRACT Achieving high strength-ductility synergy in hard-to-deform high-alloyed Mg-Gd-Y-Zn-Zr alloys by rolling remains a great challenge. In this work, a Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr (wt.%) alloy sheet possessing a high yield strength (YS) of ∼385 MPa, ultimate tensile strength (UTS) of ∼420 MPa and elongation of ∼19% was achieved via a single-pass hard-plate rolling (HPR) process. The high YS is mainly from amounts of submicron FGs and strong interactions between densely distributed γ′ precipitates and pyramidal dislocations in CGs. The activation of multiple slip systems, HDI-hardening effect, and crack suppression effect from γ′ particles, endow the excellent ductility. GRAPHICAL ABSTRACT IMPACT STATEMENT The hard-to-deform WE94 alloy sheet exhibiting a superior strength-ductility synergy has been prepared by a single-pass HPR process. The bimodal grain structure containing substantial ultrafine grains coupling with inhomogeneously-distributed nano-scale precipitates accounts for the superior mechanical properties.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"11 1","pages":"772 - 780"},"PeriodicalIF":8.3,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42855914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}