Bo Yang, Fuxing Yin, Baoxi Liu, Liying Sun, Tianlong Liu, Hui Yu, Andrey Belyakov, Zhichao Luo
{"title":"在异质超细晶粒层状钢中通过晶界分层消除温度与韧性之间的矛盾","authors":"Bo Yang, Fuxing Yin, Baoxi Liu, Liying Sun, Tianlong Liu, Hui Yu, Andrey Belyakov, Zhichao Luo","doi":"10.1080/21663831.2024.2399880","DOIUrl":null,"url":null,"abstract":"Heterostructured ferritic steels with bimodal-grained lamellar (BG-L) and ultrafine-grained lamellar (UFG-L) microstructure were prepared through a warm deformation process. The BG-L steel exhibits enhanced mechanical properties compared to conventional quenched and tempered (QT) steel. While the UFG-L steel demonstrates an outstanding combination of strength, ductility, and toughness. Furthermore, the UFG-L steels exhibit no ductile-to-brittle transition (DBT) from room temperature (RT) to liquid nitrogen temperature (LNT) and the Charpy impact energy remains as high as 314 J at LNT. The enhanced toughness at LNT can be attributed to the crack-arrester mechanism caused by grain-boundary delamination.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"9 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eliminate the contradiction between temperature and toughness by grain-boundary delamination in heterogeneous ultrafine-grained lamellar steels\",\"authors\":\"Bo Yang, Fuxing Yin, Baoxi Liu, Liying Sun, Tianlong Liu, Hui Yu, Andrey Belyakov, Zhichao Luo\",\"doi\":\"10.1080/21663831.2024.2399880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterostructured ferritic steels with bimodal-grained lamellar (BG-L) and ultrafine-grained lamellar (UFG-L) microstructure were prepared through a warm deformation process. The BG-L steel exhibits enhanced mechanical properties compared to conventional quenched and tempered (QT) steel. While the UFG-L steel demonstrates an outstanding combination of strength, ductility, and toughness. Furthermore, the UFG-L steels exhibit no ductile-to-brittle transition (DBT) from room temperature (RT) to liquid nitrogen temperature (LNT) and the Charpy impact energy remains as high as 314 J at LNT. The enhanced toughness at LNT can be attributed to the crack-arrester mechanism caused by grain-boundary delamination.\",\"PeriodicalId\":18291,\"journal\":{\"name\":\"Materials Research Letters\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21663831.2024.2399880\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21663831.2024.2399880","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Eliminate the contradiction between temperature and toughness by grain-boundary delamination in heterogeneous ultrafine-grained lamellar steels
Heterostructured ferritic steels with bimodal-grained lamellar (BG-L) and ultrafine-grained lamellar (UFG-L) microstructure were prepared through a warm deformation process. The BG-L steel exhibits enhanced mechanical properties compared to conventional quenched and tempered (QT) steel. While the UFG-L steel demonstrates an outstanding combination of strength, ductility, and toughness. Furthermore, the UFG-L steels exhibit no ductile-to-brittle transition (DBT) from room temperature (RT) to liquid nitrogen temperature (LNT) and the Charpy impact energy remains as high as 314 J at LNT. The enhanced toughness at LNT can be attributed to the crack-arrester mechanism caused by grain-boundary delamination.
期刊介绍:
Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.