Materials Science for Energy Technologies最新文献

筛选
英文 中文
Highly efficient and stable Ra2LaNbO6 double perovskite for energy conversion device applications 高效稳定的Ra2LaNbO6双钙钛矿,用于能量转换装置
Materials Science for Energy Technologies Pub Date : 2023-07-17 DOI: 10.1016/j.mset.2023.07.005
Jitendra Kumar Bairwa , Peeyush Kumar Kamlesh , Upasana Rani , Rashmi Singh , Rajeev Gupta , Sarita Kumari , Tanuj Kumar , Ajay Singh Verma
{"title":"Highly efficient and stable Ra2LaNbO6 double perovskite for energy conversion device applications","authors":"Jitendra Kumar Bairwa ,&nbsp;Peeyush Kumar Kamlesh ,&nbsp;Upasana Rani ,&nbsp;Rashmi Singh ,&nbsp;Rajeev Gupta ,&nbsp;Sarita Kumari ,&nbsp;Tanuj Kumar ,&nbsp;Ajay Singh Verma","doi":"10.1016/j.mset.2023.07.005","DOIUrl":"10.1016/j.mset.2023.07.005","url":null,"abstract":"<div><p>Using first-principles calculations, in this piece of work, authors have investigated the physical properties of Ra<sub>2</sub>LaNbO<sub>6</sub> double perovskite by employing the linearized augmented plane wave (LAPW) method. Structural and electronic properties are determined by using LDA, GGA (WC and PBE), LDA + mBJ, and GGA + mBJ potentials. We have found that Ra<sub>2</sub>LaNbO<sub>6</sub> is an indirect band gap (E<sub>g</sub> = 2.4 eV) semiconductor. Its elastic and thermodynamic parameters demonstrate its stability. Its optical study indicates that this material opens the door to its applications in optical devices such as photodetectors, solar cells, superlenses, optical fibers, filters, electromagnetic shielding devices, photovoltaic devices, etc. This material is very good for its practical implementation in thermoelectric devices as both <em>p-</em> and <em>n-</em>type material and extends the interest of experimentalists for further investigations. Thus, Ra<sub>2</sub>LaNbO<sub>6</sub> is found thermodynamically stable and identified as a potential candidate for photovoltaic and thermoelectric devices.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 61-72"},"PeriodicalIF":0.0,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41996546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
An overview of microstructure, mechanical properties and processing of high entropy alloys and its future perspectives in aeroengine applications 高熵合金的组织、力学性能和加工综述及其在航空发动机中的应用前景
Materials Science for Energy Technologies Pub Date : 2023-07-16 DOI: 10.1016/j.mset.2023.07.004
Tushar Sonar , Mikhail Ivanov , Evgeny Trofimov , Aleksandr Tingaev , Ilsiya Suleymanova
{"title":"An overview of microstructure, mechanical properties and processing of high entropy alloys and its future perspectives in aeroengine applications","authors":"Tushar Sonar ,&nbsp;Mikhail Ivanov ,&nbsp;Evgeny Trofimov ,&nbsp;Aleksandr Tingaev ,&nbsp;Ilsiya Suleymanova","doi":"10.1016/j.mset.2023.07.004","DOIUrl":"10.1016/j.mset.2023.07.004","url":null,"abstract":"<div><p>Modern engineering applications continually strive to develop greater performance mechanical components with good microstructural stability, improved mechanical properties, corrosion resistance and decreased cost of repairing and maintenance. This necessitates the broad use of advanced high performance materials like high entropy alloys (HEAs). These alloys are created by combining five or more alloying elements in equal or substantial amount. About 5 to 35 at. % of the alloying element is present in HEAs. It is characterized primarily by greater entropy, slow diffusion, severe lattice distortion, and cocktail effects. Due to its advanced microstructural stability throughout a larger temperature span and for longer length of time, it demonstrates improved mechanical characteristics at ambient temperature, cryogenic temperature, and elevated temperature. The diversity of elemental contents and significantly higher mixing entropy of HEAs make them mechanically superior to classic metals and alloys. It also shows better strength to weight ratio. Hence, it qualifies as a possible structural and functional material for aeroengine applications. In this work, the studies on the HEAs are briefly reviewed. A basic explanation of the four core effects of HEAs is given. Discussion is held on microstructure and mechanical properties of HEAs. The processing routes for manufacturing of HEAs (arc melting, bridgman solidification, mechanical alloying and vapour deposition) are presented briefly. The influence of heat treatment on mechanical behavior and microstructure of HEAs is presented. The simulation approach of CALPHAD modeling for designing of HEAs is discussed briefly. The future scope for research and development of HEAs in aeroengine applications is briefed.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 35-60"},"PeriodicalIF":0.0,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44820344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Synthesis and application of nano-silicon prepared from rice husk with the hydrothermal method and its use for anode lithium-ion batteries 稻壳水热法制备纳米硅及其在锂离子电池中的应用
Materials Science for Energy Technologies Pub Date : 2023-07-10 DOI: 10.1016/j.mset.2023.07.003
Susilo Sudarman , Andriayani , Tamrin , Muhammad Taufik
{"title":"Synthesis and application of nano-silicon prepared from rice husk with the hydrothermal method and its use for anode lithium-ion batteries","authors":"Susilo Sudarman ,&nbsp;Andriayani ,&nbsp;Tamrin ,&nbsp;Muhammad Taufik","doi":"10.1016/j.mset.2023.07.003","DOIUrl":"10.1016/j.mset.2023.07.003","url":null,"abstract":"<div><p>Nano-silicon is synthesized by hydrothermal method from rice husk, which has the advantage of using low temperature in an autoclave at 180 °C. Reduction of silica using a mixture of silica gel extracted from rice husks with Mg powder. The silica gel and Mg powder reaction produces nano-silicon. XRD diffractogram, it can be seen that Si-0.5, Si-0.6, and Si-0.7 form hkl (1<!--> <!-->1<!--> <!-->1), (2<!--> <!-->2<!--> <!-->0), (3<!--> <!-->1<!--> <!-->1), (4<!--> <!-->0<!--> <!-->0), (3<!--> <!-->3<!--> <!-->1), and (4<!--> <!-->2<!--> <!-->2). Raman spectra show peaks at the Raman shift of 520 cm<sup>−1</sup>, XPS spectrum high scan Si2p peaks at 99 eV, indicating silicon, and at 103 eV, the oxide layer on nano-silicon. The isotherm adsorption graph using the BET method type IV isotherm graphs with surface areas are 18.60 m<sup>2</sup>g<sup>−1</sup> until 20.39 m<sup>2</sup>g<sup>−1</sup>. Pore size using the BJH method shows 1.69 nm until 8.30 nm. SEM and TEM nano-silicon morphology images, the shape of the nano-silicon is spherical. The nano-silicon formed produces high-performance anode lithium-ion batteries with a discharge capacity of 1757 mAh g<sup>−1</sup>, above 1000 mAh g<sup>−1</sup> for approximately 200 cycles.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 1-8"},"PeriodicalIF":0.0,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49522346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and fabrication of photovoltaics based on MFS (Ag/BaTiO3/silicon p-type) structure 基于MFS(Ag/BaTiO3/硅p型)结构的光伏器件的设计与制造
Materials Science for Energy Technologies Pub Date : 2023-07-07 DOI: 10.1016/j.mset.2023.06.002
Irzaman , M. Dahrul , M. Rahmani , A.M. Rukyati , Samsidar , Nurhidayah , F. Deswardani , M. Peslinof , R.P. Jenie , J. Iskandar , Y. Wahyuni , K. Priandana , R. Siskandar
{"title":"Design and fabrication of photovoltaics based on MFS (Ag/BaTiO3/silicon p-type) structure","authors":"Irzaman ,&nbsp;M. Dahrul ,&nbsp;M. Rahmani ,&nbsp;A.M. Rukyati ,&nbsp;Samsidar ,&nbsp;Nurhidayah ,&nbsp;F. Deswardani ,&nbsp;M. Peslinof ,&nbsp;R.P. Jenie ,&nbsp;J. Iskandar ,&nbsp;Y. Wahyuni ,&nbsp;K. Priandana ,&nbsp;R. Siskandar","doi":"10.1016/j.mset.2023.06.002","DOIUrl":"10.1016/j.mset.2023.06.002","url":null,"abstract":"<div><p>The experiment was carried out by growing BaTiO<sub>3</sub> (Undoped or Li-doped) on p-type Si<sub>(1<!--> <!-->0<!--> <!-->0)</sub> substrates using the Chemical Solution Deposition (CSD) method and spin coating at a rotational speed of 3000 rpm for 60 s, followed by heating at 850 °C. The characterization results show that the bandgap energy value of the thin film due to lithium doping reduces the bandgap energy value. This is presumably because the donor atom added to a semiconductor causes the allowable energy level to be slightly below the conduction band. The presence of this new band causes the thin film bandgap energy to decrease with a five-valent tantalum dip. The morphological properties showed that the BaTiO<sub>3</sub>/Si<sub>(1<!--> <!-->0<!--> <!-->0)</sub> thin film particles in the deposited lithium had a fairly homogeneous grain. With the addition of lithium acetate as a binder into barium titanate, the grain size is getting smaller because it is suspected that the lithium-ion radius is smaller than the barium-ion radius. Measurement of I-V on the thin film shows that the output voltage value increases with more light intensity hitting the surface of the thin film. The greater the light intensity, the greater the energy of the photons, so the electrons are easier to jump. The three things above (both electrical and morphological properties) conclude that the thin films grown have the potential for photovoltaics.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 29-34"},"PeriodicalIF":0.0,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45298981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilization of hemp stalk as a potential resource for bioenergy 大麻秸秆作为一种潜在的生物能源资源的利用
Materials Science for Energy Technologies Pub Date : 2023-07-06 DOI: 10.1016/j.mset.2023.07.001
Pannipa Chaowana , Warinya Hnoocham , Sumate Chaiprapat , Piyawan Yimlamai , Korawit Chitbanyong , Kapphapaphim Wanitpinyo , Tanapon Chaisan , Yupadee Paopun , Sawitree Pisutpiched , Somwang Khantayanuwong , Buapan Puangsin
{"title":"Utilization of hemp stalk as a potential resource for bioenergy","authors":"Pannipa Chaowana ,&nbsp;Warinya Hnoocham ,&nbsp;Sumate Chaiprapat ,&nbsp;Piyawan Yimlamai ,&nbsp;Korawit Chitbanyong ,&nbsp;Kapphapaphim Wanitpinyo ,&nbsp;Tanapon Chaisan ,&nbsp;Yupadee Paopun ,&nbsp;Sawitree Pisutpiched ,&nbsp;Somwang Khantayanuwong ,&nbsp;Buapan Puangsin","doi":"10.1016/j.mset.2023.07.001","DOIUrl":"10.1016/j.mset.2023.07.001","url":null,"abstract":"<div><p>Recent concerns regarding climate change and rising energy costs have dramatically increased interest in using alternative energies, especially biomass energy which is carbon neutral. Hemp is among the fastest-growing plants with unique fiber characteristics. The objective of this study was to investigate the physical and chemical properties of hemp stalks of seven different clones and to assess their feasibility as a sustainable bioenergy resource. Seven clones (KU03, KU18, KU27, KU45, KU49, RPF1, and RPF2) of four-month-old hemp (<em>Cannabis sativa</em>) were used in this work. Physical properties, volatile content, fixed carbon, ash content, calorific value, chemical composition, ash composition, and metal element of the samples were investigated. The results revealed that hemp stalk had desirable fuel characteristics with high volatile substance, high heating value, low ash content, very low nitrogen content, and non-detectable sulfur. Selecting well-adapted clones and appropriate technology which can convert the hemp stalks to suitable bioenergy forms are important aspects of bioresource management. Based on our findings, some selected hemp clone biomass possessed excellent characteristics and great potential to be used as raw material for bioenergy production.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 19-28"},"PeriodicalIF":0.0,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47389612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Poly(lactic acid)/clarithromycin with metals dioxides nanoparticles: Preparation and performance under ultraviolet irradiation 聚乳酸/克拉霉素金属氧化物纳米颗粒的制备及紫外辐照性能研究
Materials Science for Energy Technologies Pub Date : 2023-07-04 DOI: 10.1016/j.mset.2023.07.002
Hadeel Adil , Hamsa Thamer , Raghda Alsayed , Muna Bufaroosha , Dina S. Ahmed , Mohammed H. Al-Mashhadani , Hassan Hashim , Amani A. Husain , Emad Yousif
{"title":"Poly(lactic acid)/clarithromycin with metals dioxides nanoparticles: Preparation and performance under ultraviolet irradiation","authors":"Hadeel Adil ,&nbsp;Hamsa Thamer ,&nbsp;Raghda Alsayed ,&nbsp;Muna Bufaroosha ,&nbsp;Dina S. Ahmed ,&nbsp;Mohammed H. Al-Mashhadani ,&nbsp;Hassan Hashim ,&nbsp;Amani A. Husain ,&nbsp;Emad Yousif","doi":"10.1016/j.mset.2023.07.002","DOIUrl":"10.1016/j.mset.2023.07.002","url":null,"abstract":"<div><p>Different polylactic acid (PLA) thin films containing clarithromycin and a number of metal oxide nanoparticles (magnesium, titanium, zinc, and nickel) dioxides were created. Low dosages of metal oxides (0.01% by weight) and clarithromycin (0.5% by weight) were used to make transparent films. The role of metal oxide nanoparticles and clarithromycin as UV blockers for PLA photodegradation was looked at. The durability of polymeric materials is improved more by clarithromycin in combination with metal oxides than by clarithromycin alone in PLA films. An analysis of the weight loss, surface morphology, and changes in infrared spectra of irradiated polymeric blends revealed that nickel oxide and clarithromycin together function as effective UV blockers and offer PLA a high degree of protection. Nickel oxide nanoparticles were the best addition for PLA stability. Highly alkaline metal oxides are present. Contrarily, the heteroatom and aromatic nature of clarithromycin enables it to absorb damaging radiation and function as an ultraviolet absorption. Thus, the adaptability of PLA to photodegradation was significantly improved by using a mixture of metal oxide nanoparticles and clarithromycin.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 73-84"},"PeriodicalIF":0.0,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45857110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced photocatalytic removal of Cd(II) from aqueous solution using Bi/S co-doped carbon quantum dots Bi/S共掺杂碳量子点增强光催化去除水溶液中Cd(II)
Materials Science for Energy Technologies Pub Date : 2023-07-01 DOI: 10.1016/j.mset.2023.06.004
Dinesh Kumar , Jay Pandey , Arinjay Kumar
{"title":"Enhanced photocatalytic removal of Cd(II) from aqueous solution using Bi/S co-doped carbon quantum dots","authors":"Dinesh Kumar ,&nbsp;Jay Pandey ,&nbsp;Arinjay Kumar","doi":"10.1016/j.mset.2023.06.004","DOIUrl":"10.1016/j.mset.2023.06.004","url":null,"abstract":"<div><p>In this study, S and Bi Co-doped carbon quantum dots were synthesized and their application for Cd(II) removal was investigated. All the experiments were performed in batch mode and effect Bi/S ratio on pH was investigated. It was observed that 12 pH is most suitable for fast removal of Cd<sup>2+</sup>. The optimized Bi/S ratio was further investigated for effect of adsorbent dosage, initial concentration of Cd(II). Addition of four scavenger solvent namely formaldehyde, acetic acid, ethanediamine and methanol was investigated for enhancement in the photocatalytic activity. Maximum removal efficiency was observed with ethandiamine ∼94% at 300 ppm as compared to formaldehyde (∼90.3%), methanol (∼86.7%) and acetic acid(∼86.3%) indicating that amine group is more suitable as scavenger molecule. Adsorption isotherms of Cd(II) on Bi/S doped on CQD were fitted for different adsorption isotherm model namely Langmuir, Freundlich and Temkin isotherms. Both Lanmguir and Temkin isotherm were observed to fit well with R<sup>2</sup> value above 98% as compared to Freundlich with lower R<sup>2</sup> value (∼95.3%), indicating that a combination of chemisorption phenomenon as well as availability of energy of electron could be responsible for the Cd(II) removal. Thermodynamic parameters both enthalpy change and entropy change were estimated as −10.76 kJ/mol and −11.2 kJ/mol K. All three parameters were negative indicating that the process was spontaneous and exothermic.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 9-18"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48718547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation of metal ceramic single layer coatings for solar energy applications 太阳能应用中金属陶瓷单层涂层的模拟
Materials Science for Energy Technologies Pub Date : 2023-06-28 DOI: 10.1016/j.mset.2023.06.003
Muralidhar Singh M , Manish Kumar , P. Sivaiah , Vijaya G. , Amit Kumar , Dheeraj Kumar , Shatrudhan Pandey , Abhishek Kumar Singh , Ahmed Farouk Deifalla , S.M. Mozammil Hasnain
{"title":"Simulation of metal ceramic single layer coatings for solar energy applications","authors":"Muralidhar Singh M ,&nbsp;Manish Kumar ,&nbsp;P. Sivaiah ,&nbsp;Vijaya G. ,&nbsp;Amit Kumar ,&nbsp;Dheeraj Kumar ,&nbsp;Shatrudhan Pandey ,&nbsp;Abhishek Kumar Singh ,&nbsp;Ahmed Farouk Deifalla ,&nbsp;S.M. Mozammil Hasnain","doi":"10.1016/j.mset.2023.06.003","DOIUrl":"10.1016/j.mset.2023.06.003","url":null,"abstract":"<div><p>The coating materials, thickness and number of layers directly influence the reflectance and absorptance properties of the thin films. However, while selecting the materials for single and coatings, the substrate’s refractive index; bond layer, functional layer and protective layer have to be carefully chosen to obtain the desired reflectance and absorptance values. Hence, modelling and simulating the thin film coatings is essential before conducting the experiments to get meaningful results. The simulation results of single coatings have been discussed. Generally, glass is one of the widely used substrate materials for solar reflectors, aluminum is the optimal functional material, with a reflection of 93 % of light. Nickel would be a preferable functional layer with a reflection of 64 % and absorptance of 36 %, Si<sub>3</sub>N<sub>4</sub> being the acceptable bond layers and protective layers with a reflection of 68 % some solar thermal receiver tube applications however research effort is being made to find alternate lightweight materials for this application. Polycarbonate has been chosen as an alternate material for the substrate because it is light in weight with a reflection of 93 %, which is durable and not fragile.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 85-90"},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42596083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Evaluation of Co0.7Ni0.3Fe2O4 nano-particle on structural, morphological, and magnetic properties as a heavy metal adsorbent in Cu, Cr Co0.7Ni0.3Fe2O4纳米粒子作为Cu、Cr重金属吸附剂的结构、形态和磁性评价
Materials Science for Energy Technologies Pub Date : 2023-01-01 DOI: 10.1016/j.mset.2022.11.011
Martha Rianna , Aknes Talanda , Yoga Pratama , Syahrul Humaidi , Eko Arief Setiadi , Anggito P. Tetuko , Lukman Faris Nurdiyansah , Timbangen Sembiring , Perdamean Sebayang
{"title":"Evaluation of Co0.7Ni0.3Fe2O4 nano-particle on structural, morphological, and magnetic properties as a heavy metal adsorbent in Cu, Cr","authors":"Martha Rianna ,&nbsp;Aknes Talanda ,&nbsp;Yoga Pratama ,&nbsp;Syahrul Humaidi ,&nbsp;Eko Arief Setiadi ,&nbsp;Anggito P. Tetuko ,&nbsp;Lukman Faris Nurdiyansah ,&nbsp;Timbangen Sembiring ,&nbsp;Perdamean Sebayang","doi":"10.1016/j.mset.2022.11.011","DOIUrl":"https://doi.org/10.1016/j.mset.2022.11.011","url":null,"abstract":"","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49755578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Enhanced piezoelectric nanogenerator performance with AZO/NiO heterojunction AZO/NiO异质结增强压电纳米发电机性能
Materials Science for Energy Technologies Pub Date : 2023-01-01 DOI: 10.1016/j.mset.2022.11.009
Nandang Mufti , Haidar Ali , Atika Sari Puspita Dewi , Herlin Pujiarti , Sunaryono , Aripriharta
{"title":"Enhanced piezoelectric nanogenerator performance with AZO/NiO heterojunction","authors":"Nandang Mufti ,&nbsp;Haidar Ali ,&nbsp;Atika Sari Puspita Dewi ,&nbsp;Herlin Pujiarti ,&nbsp;Sunaryono ,&nbsp;Aripriharta","doi":"10.1016/j.mset.2022.11.009","DOIUrl":"https://doi.org/10.1016/j.mset.2022.11.009","url":null,"abstract":"","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49759610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信