Materials Science最新文献

筛选
英文 中文
Modelling the Quantum Capacitance of Single-layer and Bilayer Graphene 单层和双层石墨烯的量子电容建模
IF 0.9 4区 材料科学
Materials Science Pub Date : 2023-11-23 DOI: 10.5755/j02.ms.34129
Yousra Ammour, R. Remmouche, Rachid Fates
{"title":"Modelling the Quantum Capacitance of Single-layer and Bilayer Graphene","authors":"Yousra Ammour, R. Remmouche, Rachid Fates","doi":"10.5755/j02.ms.34129","DOIUrl":"https://doi.org/10.5755/j02.ms.34129","url":null,"abstract":"In this paper, we report the modelling of quantum capacitance in both single-layer and bilayer graphene devices to investigate the temperature dependence. The model includes the existence of electron and hole puddles due to local fluctuations of the potential, which is taken into account with the possibility of finite lifetimes of electronic states to calculate the quantum capacitance using the Gaussian distribution. The results indicate that the simulations are in agreement with the experimental measurements, which proves the accuracy of the proposed model. On the other hand, temperature dependence around the charge neutrality point has been reported for both single and bilayer graphene.","PeriodicalId":18230,"journal":{"name":"Materials Science","volume":"64 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139242846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rheological Behavior of a New Amorphous Alloy (Al74Cu16Mg10)99,7Zr0.3 新型无定形合金 (Al74Cu16Mg10)99,7Zr0.3 的流变行为
IF 0.9 4区 材料科学
Materials Science Pub Date : 2023-11-23 DOI: 10.5755/j02.ms.34241
V. Dyakova, Gergi Stefanov, N. Marinkov, S. Gyurov, Y. Kostova
{"title":"Rheological Behavior of a New Amorphous Alloy (Al74Cu16Mg10)99,7Zr0.3","authors":"V. Dyakova, Gergi Stefanov, N. Marinkov, S. Gyurov, Y. Kostova","doi":"10.5755/j02.ms.34241","DOIUrl":"https://doi.org/10.5755/j02.ms.34241","url":null,"abstract":"A new amorphous alloy (Al74Cu16Mg10)99,7Zr0.3 was prepared the applying a melt-spinning technique. Temperature dependence of viscosity of the alloy was determined using data from a PerkinElmer TMS2 thermo-mechanical analyzer processed according to a methodology based on the Free Volume Model (FVM). The strength of the alloy was calculated according to the Yang equation and the glass-forming ability was calculated according to the values of the Angell index mA. The activation energy of crystallization and the activation energy of the glass transition were computed using data from differential scanning calorimetry and thermomechanical experiments respectively. The activation energy of crystallization Еx = 168 ± 3.7 kJ/mol, was found to be higher than the activation energy of the glass transition Еg = 156 ± 1.4 kJ/mol, which means a dominant contribution of the atomic transport barrier, compared to the nucleation barrier. The relatively high temperature interval of the supercooled melt state Tx-Tg = 32 K and the low viscosity values in the same range ƞ(Тg) = 3.40E + 11 Pa.s and ƞ(Тx) = 1.87E + 10 Pa.s would allow thermomechanical treatment of the alloy in the temperature range of supercooled melt.","PeriodicalId":18230,"journal":{"name":"Materials Science","volume":"135 ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139244849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studies on Mechanical and Dielectric Properties of the Ni(OH)2 Filler Reinforced Polymer Composite Materials for Structural Application 用于结构应用的镍(OH)2 填充物增强聚合物复合材料的力学性能和介电性能研究
IF 0.9 4区 材料科学
Materials Science Pub Date : 2023-11-16 DOI: 10.5755/j02.ms.34793
Karthikeyan RAVI KUMAR, Rajkumar Subbiah, Ravi Balasundaram
{"title":"Studies on Mechanical and Dielectric Properties of the Ni(OH)2 Filler Reinforced Polymer Composite Materials for Structural Application","authors":"Karthikeyan RAVI KUMAR, Rajkumar Subbiah, Ravi Balasundaram","doi":"10.5755/j02.ms.34793","DOIUrl":"https://doi.org/10.5755/j02.ms.34793","url":null,"abstract":"Polymer composite materials play a vital role in many automotive and wind turbine industries because of their high mechanical properties. The present work emphasises the improvement of polymer composites used for different environmental conditions. The glass and basalt fibers with epoxy and vinyl ester matrix have been prepared individually with 3 % Ni(OH)2 filler. The mechanical and dielectric properties were investigated separately for each material. The mechanical properties of the glass fiber with vinyl ester and Ni(OH)2 filler showed better results. The dielectric strength of the glass fiber with vinyl ester and Ni(OH)2 filler material in a saline environment showed only a 38.16 % reduced dielectric value before saline treatment. The FE validation was also validated using Digimat- FE software for evaluating the void stress in the filler matrix. From the validation the glass fiber with epoxy resin and Ni(OH)2 filler showed the lowest von-Mises stress and shear stress values compared to the other materials. The overall results highlight the improvement of mechanical and electrical properties after the addition of Ni(OH)2 filler materials in offshore environment to meet the demands of the wind turbine industry.","PeriodicalId":18230,"journal":{"name":"Materials Science","volume":"14 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139268034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Friction Stir Welded Joint Properties of 2A12 Aluminum Alloy 2A12 铝合金摩擦搅拌焊接接头性能分析
IF 0.9 4区 材料科学
Materials Science Pub Date : 2023-11-15 DOI: 10.5755/j02.ms.34723
X. Ge, Hongfeng Wang, Da Huang, Weiwei Song
{"title":"Analysis of Friction Stir Welded Joint Properties of 2A12 Aluminum Alloy","authors":"X. Ge, Hongfeng Wang, Da Huang, Weiwei Song","doi":"10.5755/j02.ms.34723","DOIUrl":"https://doi.org/10.5755/j02.ms.34723","url":null,"abstract":"2A12 hot-rolled aluminum alloy has high plasticity and toughness, and is widely used in the manufacturing of structural parts in aviation, aerospace, automobiles, and other fields. To explore the effect of friction stir welding process parameters on the welded joint properties of 2A12 hot-rolled aluminum alloy, experimental investigations were conducted. The surface appearance of the welded joints under different process parameters was observed, the microstructure, microhardness, tensile strength, yield strength, elongation and the fracture morphology of the welded joints were assessed. The findings suggested that when the rotation speed was 600 rpm and the forward speed was 250 mm/min, the tensile strength, yield strength and elongation of the welded joint were all maximum, which were 437.6 MPa, 381.6 MPa and 7.5 % respectively, reaching 85.5 %, 88.1 % and 35.7 % of the base material. Under the same forward speed, the tensile strength and elongation of the welded joint initially rose and subsequently declined with the increment of rotation speed. The microhardness distribution of the welded joint exhibited a W-shape pattern. The fracture morphology showed that the fracture type of the welded joint was a ductile fracture. Unlike the base material, the welded joints did not exhibit significant necking during the tensile testing. The research results can be utilized as a reference for the engineering application of friction stir welding of 2A12 hot-rolled aluminum alloy.","PeriodicalId":18230,"journal":{"name":"Materials Science","volume":"67 12","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139275726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信